Bresenham's line algorithm

Last updated

Bresenham's line algorithm is a line drawing algorithm that determines the points of an n-dimensional raster that should be selected in order to form a close approximation to a straight line between two points. It is commonly used to draw line primitives in a bitmap image (e.g. on a computer screen), as it uses only integer addition, subtraction, and bit shifting, all of which are very cheap operations in historically common computer architectures. It is an incremental error algorithm, and one of the earliest algorithms developed in the field of computer graphics. An extension to the original algorithm called the midpoint circle algorithm may be used for drawing circles.

Contents

While algorithms such as Wu's algorithm are also frequently used in modern computer graphics because they can support antialiasing, Bresenham's line algorithm is still important because of its speed and simplicity. The algorithm is used in hardware such as plotters and in the graphics chips of modern graphics cards. It can also be found in many software graphics libraries. Because the algorithm is very simple, it is often implemented in either the firmware or the graphics hardware of modern graphics cards.

The label "Bresenham" is used today for a family of algorithms extending or modifying Bresenham's original algorithm.

History

Bresenham's line algorithm is named after Jack Elton Bresenham who developed it in 1962 at IBM. In 2001 Bresenham wrote: [1]

I was working in the computation lab at IBM's San Jose development lab. A Calcomp plotter had been attached to an IBM 1401 via the 1407 typewriter console. [The algorithm] was in production use by summer 1962, possibly a month or so earlier. Programs in those days were freely exchanged among corporations so Calcomp (Jim Newland and Calvin Hefte) had copies. When I returned to Stanford in Fall 1962, I put a copy in the Stanford comp center library. A description of the line drawing routine was accepted for presentation at the 1963 ACM national convention in Denver, Colorado. It was a year in which no proceedings were published, only the agenda of speakers and topics in an issue of Communications of the ACM. A person from the IBM Systems Journal asked me after I made my presentation if they could publish the paper. I happily agreed, and they printed it in 1965.

Method

Illustration of the result of Bresenham's line algorithm. (0,0) is at the top left corner of the grid, (1,1) is at the top left end of the line and (11, 5) is at the bottom right end of the line. Bresenham.svg
Illustration of the result of Bresenham's line algorithm. (0,0) is at the top left corner of the grid, (1,1) is at the top left end of the line and (11, 5) is at the bottom right end of the line.

The following conventions will be utilized:

The endpoints of the line are the pixels at and , where the first coordinate of the pair is the column and the second is the row.

The algorithm will be initially presented only for the octant in which the segment goes down and to the right ( and ), and its horizontal projection is longer than the vertical projection (the line has a positive slope less than 1). In this octant, for each column x between and , there is exactly one row y (computed by the algorithm) containing a pixel of the line, while each row between and may contain multiple rasterized pixels.

Bresenham's algorithm chooses the integer y corresponding to the pixel center that is closest to the ideal (fractional) y for the same x; on successive columns y can remain the same or increase by 1. The general equation of the line through the endpoints is given by:

.

Since we know the column, x, the pixel's row, y, is given by rounding this quantity to the nearest integer:

.

The slope depends on the endpoint coordinates only and can be precomputed, and the ideal y for successive integer values of x can be computed starting from and repeatedly adding the slope.

In practice, the algorithm does not keep track of the y coordinate, which increases by m = ∆y/∆x each time the x increases by one; it keeps an error bound at each stage, which represents the negative of the distance from (a) the point where the line exits the pixel to (b) the top edge of the pixel. This value is first set to (due to using the pixel's center coordinates), and is incremented by m each time the x coordinate is incremented by one. If the error becomes greater than 0.5, we know that the line has moved upwards one pixel, and that we must increment our y coordinate and readjust the error to represent the distance from the top of the new pixel – which is done by subtracting one from error. [2]

Derivation

To derive Bresenham's algorithm, two steps must be taken. The first step is transforming the equation of a line from the typical slope-intercept form into something different; and then using this new equation to draw a line based on the idea of accumulation of error.

Line equation

y=f(x)=.5x+1 or f(x,y)=x-2y+2 Line 1.5x+1.svg
y=f(x)=.5x+1 or f(x,y)=x-2y+2
Positive and negative half-planes Line 1.5x+1 -- planes.svg
Positive and negative half-planes

The slope-intercept form of a line is written as

where is the slope and is the y-intercept. Because this is a function of only , it can't represent a vertical line. Therefore, it would be useful to make this equation written as a function of both and, to be able to draw lines at any angle. The angle (or slope) of a line can be stated as "rise over run", or . Then, using algebraic manipulation,

Letting this last equation be a function of and , it can be written as

where the constants are

The line is then defined for some constants , , and anywhere . That is, for any not on the line, . This form involves only integers if and are integers, since the constants , , and are defined as integers.

As an example, the line then this could be written as . The point (2,2) is on the line

and the point (2,3) is not on the line

and neither is the point (2,1)

Notice that the points (2,1) and (2,3) are on opposite sides of the line and evaluates to positive or negative. A line splits a plane into halves and the half-plane that has a negative can be called the negative half-plane, and the other half can be called the positive half-plane. This observation is very important in the remainder of the derivation.

Algorithm

Clearly, the starting point is on the line

only because the line is defined to start and end on integer coordinates (though it is entirely reasonable to want to draw a line with non-integer end points).

Candidate point (2,2) in blue and two candidate points in green (3,2) and (3,3) Line 1.5x+1 -- candidates.svg
Candidate point (2,2) in blue and two candidate points in green (3,2) and (3,3)

Keeping in mind that the slope is at most , the problem now presents itself as to whether the next point should be at or . Perhaps intuitively, the point should be chosen based upon which is closer to the line at . If it is closer to the former then include the former point on the line, if the latter then the latter. To answer this, evaluate the line function at the midpoint between these two points:

If the value of this is positive then the ideal line is below the midpoint and closer to the candidate point ; i.e. the y coordinate should increase. Otherwise, the ideal line passes through or above the midpoint, and the y coordinate should stay the same; in which case the point is chosen. The value of the line function at this midpoint is the sole determinant of which point should be chosen.

The adjacent image shows the blue point (2,2) chosen to be on the line with two candidate points in green (3,2) and (3,3). The black point (3, 2.5) is the midpoint between the two candidate points.

Algorithm for integer arithmetic

Alternatively, the difference between points can be used instead of evaluating f(x,y) at midpoints. This alternative method allows for integer-only arithmetic, which is generally faster than using floating-point arithmetic. To derive the other method, define the difference to be as follows:

For the first decision, this formulation is equivalent to the midpoint method since at the starting point. Simplifying this expression yields:

Just as with the midpoint method, if is positive, then choose , otherwise choose .

If is chosen, the change in D will be:

If is chosen the change in D will be:

If the new D is positive then is chosen, otherwise . This decision can be generalized by accumulating the error on each subsequent point.

Plotting the line from (0,1) to (6,4) showing a plot of grid lines and pixels Line 1.5x+1 -- points.svg
Plotting the line from (0,1) to (6,4) showing a plot of grid lines and pixels

All of the derivation for the algorithm is done. One performance issue is the 1/2 factor in the initial value of D. Since all of this is about the sign of the accumulated difference, then everything can be multiplied by 2 with no consequence.

This results in an algorithm that uses only integer arithmetic.

plotLine(x0, y0, x1, y1)     dx = x1 - x0     dy = y1 - y0     D = 2*dy - dx     y = y0      for x from x0 to x1         plot(x, y)         if D > 0             y = y + 1             D = D - 2*dx         end if         D = D + 2*dy

Running this algorithm for from (0,1) to (6,4) yields the following differences with dx=6 and dy=3:

D=2*3-6=0 Loop from 0 to 6  * x=0: plot(0, 1), D≤0: D=0+6=6  * x=1: plot(1, 1), D>0: D=6-12=-6, y=1+1=2, D=-6+6=0  * x=2: plot(2, 2), D≤0: D=0+6=6  * x=3: plot(3, 2), D>0: D=6-12=-6, y=2+1=3, D=-6+6=0  * x=4: plot(4, 3), D≤0: D=0+6=6  * x=5: plot(5, 3), D>0: D=6-12=-6, y=3+1=4, D=-6+6=0  * x=6: plot(6, 4), D≤0: D=0+6=6

The result of this plot is shown to the right. The plotting can be viewed by plotting at the intersection of lines (blue circles) or filling in pixel boxes (yellow squares). Regardless, the plotting is the same.

All cases

However, as mentioned above this only works for octant zero, that is lines starting at the origin with a slope between 0 and 1 where x increases by exactly 1 per iteration and y increases by 0 or 1.

The algorithm can be extended to cover slopes between 0 and -1 by checking whether y needs to increase or decrease (i.e. dy < 0)

plotLineLow(x0, y0, x1, y1)     dx = x1 - x0     dy = y1 - y0     yi = 1     if dy < 0         yi = -1         dy = -dy     end if     D = (2 * dy) - dx     y = y0      for x from x0 to x1         plot(x, y)         if D > 0             y = y + yi             D = D + (2 * (dy - dx))         else             D = D + 2*dy         end if

By switching the x and y axis an implementation for positive or negative steep slopes can be written as

plotLineHigh(x0, y0, x1, y1)     dx = x1 - x0     dy = y1 - y0     xi = 1     if dx < 0         xi = -1         dx = -dx     end if     D = (2 * dx) - dy     x = x0      for y from y0 to y1         plot(x, y)         if D > 0             x = x + xi             D = D + (2 * (dx - dy))         else             D = D + 2*dx         end if

A complete solution would need to detect whether x1 > x0 or y1 > y0 and reverse the input coordinates before drawing, thus

plotLine(x0, y0, x1, y1)     if abs(y1 - y0) < abs(x1 - x0)         if x0 > x1             plotLineLow(x1, y1, x0, y0)         else             plotLineLow(x0, y0, x1, y1)         end ifelseif y0 > y1             plotLineHigh(x1, y1, x0, y0)         else             plotLineHigh(x0, y0, x1, y1)         end ifend if

In low level implementations which access the video memory directly, it would be typical for the special cases of vertical and horizontal lines to be handled separately as they can be highly optimized.

Some versions use Bresenham's principles of integer incremental error to perform all octant line draws, balancing the positive and negative error between the x and y coordinates. [3]

plotLine(x0, y0, x1, y1)     dx = abs(x1 - x0)     sx = x0 < x1 ? 1 : -1     dy = -abs(y1 - y0)     sy = y0 < y1 ? 1 : -1     error = dx + dy          while true         plot(x0, y0)         if x0 == x1 && y0 == y1 break         e2 = 2 * error         if e2 >= dy             if x0 == x1 break             error = error + dy             x0 = x0 + sx         end ifif e2 <= dx             if y0 == y1 break             error = error + dx             y0 = y0 + sy         end ifend while

Similar algorithms

The Bresenham algorithm can be interpreted as slightly modified digital differential analyzer (using 0.5 as error threshold instead of 0, which is required for non-overlapping polygon rasterizing).

The principle of using an incremental error in place of division operations has other applications in graphics. It is possible to use this technique to calculate the U,V co-ordinates during raster scan of texture mapped polygons. [4] The voxel heightmap software-rendering engines seen in some PC games also used this principle.

Bresenham also published a Run-Slice computational algorithm: while the above described Run-Length algorithm runs the loop on the major axis, the Run-Slice variation loops the other way. [5] This method has been represented in a number of US patents:

5,815,163Method and apparatus to draw line slices during calculation
5,740,345Method and apparatus for displaying computer graphics data stored in a compressed format with an efficient color indexing system
5,657,435Run slice line draw engine with non-linear scaling capabilities
5,627,957Run slice line draw engine with enhanced processing capabilities
5,627,956Run slice line draw engine with stretching capabilities
5,617,524Run slice line draw engine with shading capabilities
5,611,029Run slice line draw engine with non-linear shading capabilities
5,604,852Method and apparatus for displaying a parametric curve on a video display
5,600,769Run slice line draw engine with enhanced clipping techniques

The algorithm has been extended to:

See also

Notes

  1. Paul E. Black. Dictionary of Algorithms and Data Structures, NIST. https://xlinux.nist.gov/dads/HTML/bresenham.html
  2. Joy, Kenneth. "Bresenham's Algorithm" (PDF). Visualization and Graphics Research Group, Department of Computer Science, University of California, Davis. Retrieved 20 December 2016.
  3. 1 2 Zingl, Alois (2012). A Rasterizing Algorithm for Drawing Curves (PDF) (Report).
    HTML abstract and demo: Zingl, Alois (2016). "Bresenham". members.chello.at.
  4. US 5739818,Spackman, John Neil,"Apparatus and method for performing perspectively correct interpolation in computer graphics",published 1998-04-14, assigned to Canon KK
  5. "Michael Abrash's Graphics Programming Black Book Special Edition: The Good, the Bad, and the Run-Sliced". www.phatcode.net. Retrieved 13 February 2024.;
  6. "Murphy's Modified Bresenham Line Algorithm". homepages.enterprise.net. Retrieved 2018-06-09. ('Line Thickening by Modification to Bresenham's Algorithm' in the IBM Technical Disclosure Bulletin Vol. 20 No. 12 May 1978 pages 5358-5366.)

Related Research Articles

<span class="mw-page-title-main">Slope</span> Mathematical term

In mathematics, the slope or gradient of a line is a number that describes both the direction and the steepness of the line. Slope is often denoted by the letter m; there is no clear answer to the question why the letter m is used for slope, but its earliest use in English appears in O'Brien (1844) who wrote the equation of a straight line as "y = mx + b" and it can also be found in Todhunter (1888) who wrote it as "y = mx + c".

<span class="mw-page-title-main">Differential calculus</span> Area of mathematics; subarea of calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

<span class="mw-page-title-main">Line drawing algorithm</span> Methods of approximating line segments for pixel displays

In computer graphics, a line drawing algorithm is an algorithm for approximating a line segment on discrete graphical media, such as pixel-based displays and printers. On such media, line drawing requires an approximation. Basic algorithms rasterize lines in one color. A better representation with multiple color gradations requires an advanced process, spatial anti-aliasing.

<span class="mw-page-title-main">Linear interpolation</span> Method of curve fitting to construct new data points within the range of known data points

In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.

In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset.

<span class="mw-page-title-main">Xiaolin Wu's line algorithm</span> Line algorithm with antialiasing

Xiaolin Wu's line algorithm is an algorithm for line antialiasing.

In the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context. One is numerical linear algebra and the other is algorithms for solving ordinary and partial differential equations by discrete approximation.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

In the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the values, for example, fitting nine cubic polynomials between each of the pairs of ten points, instead of fitting a single degree-nine polynomial to all of them. Spline interpolation is often preferred over polynomial interpolation because the interpolation error can be made small even when using low-degree polynomials for the spline. Spline interpolation also avoids the problem of Runge's phenomenon, in which oscillation can occur between points when interpolating using high-degree polynomials.

In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation.

Particle filters, or sequential Monte Carlo methods, are a set of Monte Carlo algorithms used to find approximate solutions for filtering problems for nonlinear state-space systems, such as signal processing and Bayesian statistical inference. The filtering problem consists of estimating the internal states in dynamical systems when partial observations are made and random perturbations are present in the sensors as well as in the dynamical system. The objective is to compute the posterior distributions of the states of a Markov process, given the noisy and partial observations. The term "particle filters" was first coined in 1996 by Pierre Del Moral about mean-field interacting particle methods used in fluid mechanics since the beginning of the 1960s. The term "Sequential Monte Carlo" was coined by Jun S. Liu and Rong Chen in 1998.

In computer graphics, the Liang–Barsky algorithm is a line clipping algorithm. The Liang–Barsky algorithm uses the parametric equation of a line and inequalities describing the range of the clipping window to determine the intersections between the line and the clip window. With these intersections it knows which portion of the line should be drawn. So this algorithm is significantly more efficient than Cohen–Sutherland. The idea of the Liang–Barsky clipping algorithm is to do as much testing as possible before computing line intersections.

<span class="mw-page-title-main">Karatsuba algorithm</span> Algorithm for integer multiplication

The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. It is a divide-and-conquer algorithm that reduces the multiplication of two n-digit numbers to three multiplications of n/2-digit numbers and, by repeating this reduction, to at most single-digit multiplications. It is therefore asymptotically faster than the traditional algorithm, which performs single-digit products.

Simplicial continuation, or piecewise linear continuation, is a one-parameter continuation method which is well suited to small to medium embedding spaces. The algorithm has been generalized to compute higher-dimensional manifolds by and.

In computer graphics, a digital differential analyzer (DDA) is hardware or software used for interpolation of variables over an interval between start and end point. DDAs are used for rasterization of lines, triangles and polygons. They can be extended to non linear functions, such as perspective correct texture mapping, quadratic curves, and traversing voxels.

For digital image processing, the Focus recovery from a defocused image is an ill-posed problem since it loses the component of high frequency. Most of the methods for focus recovery are based on depth estimation theory. The Linear canonical transform (LCT) gives a scalable kernel to fit many well-known optical effects. Using LCTs to approximate an optical system for imaging and inverting this system, theoretically permits recovery of a defocused image.

In calculus, the differential represents the principal part of the change in a function with respect to changes in the independent variable. The differential is defined by

Theta* is an any-angle path planning algorithm that is based on the A* search algorithm. It can find near-optimal paths with run times comparable to those of A*.

<span class="mw-page-title-main">Linear function (calculus)</span> Polynomial function of degree at most one

In calculus and related areas of mathematics, a linear function from the real numbers to the real numbers is a function whose graph is a non-vertical line in the plane. The characteristic property of linear functions is that when the input variable is changed, the change in the output is proportional to the change in the input.

<span class="mw-page-title-main">Intersection (geometry)</span> Shape formed from points common to other shapes

In geometry, an intersection is a point, line, or curve common to two or more objects. The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point or does not exist. Other types of geometric intersection include:

References

Further reading