Broadband over power lines

Last updated

Broadband over power lines (BPL) is a method of power-line communication (PLC) that allows relatively high-speed digital data transmission over public electric power distribution wiring. BPL uses higher frequencies, a wider frequency range, and different technologies compared to other forms of power-line communications to provide high-rate communication over longer distances. BPL uses frequencies that are part of the radio spectrum allocated to over-the-air communication services; therefore, the prevention of interference to, and from, these services is a very important factor in designing BPL systems.

Contents

There are two main categories of BPL: in-house and access. In-house BPL is broadband access within a building or structure using the electric lines of the structure to provide the network infrastructure. Access BPL is the use of electrical transmission lines to deliver broadband to the home. Access BPL is considered a viable alternative to Cable or DSL to provide the 'final mile' of broadband to end users. [1]

History

BPL is based on PLC technology developed as far back as 1914 by the US telecommunications company AT&T. [2] In 1990s, BPL emerged as a means of leveraging the pervasiveness of the power grid to deliver high-speed broadband communications. The aim was to expand internet access to areas where traditional wired broadband solutions like DSL or cable were not readily available or economically viable.

In order to achieve high bandwidth levels, BPL operates at higher frequencies than traditional power line communications, typically in the range between 2 and 80 MHz. [3] The modulation techniques of BPL are Frequency Division Multiplexing (FDM) or Orthogonal Frequency Division Multiplexing (OFDM), which are both superior to Spread Spectrum or Narrowband for spectral efficiency, robustness against channel distortions, and the ability to adapt to channel changes. [4] Electricity companies have been bundling radio frequency on the same line as the electrical current to monitor the performance of their own power grids for years. There have been attempts to implement access BPL, or the provision of internet services to customers via the grid. The prospect of BPL was predicted in 2004 to possibly motivate DSL and cable operators to serve rural communities. [5]

More recently, decarbonization is leading to a significant increase in generation plants, storage devices, and consumers at lower voltage levels, causing capacity issues in distribution grids. [6] Traditional central control becomes not feasible for lower levels due to the vast number of units. [7] Energy utility companies such as E.ON, starts to adopt BPL as a key communication technology to enable real-time, high-speed decentralized control of the grid. [8]

How BPL works

Broadband Over Power Lines (BPL) works as specialized modems to convert data into signals and transmit alongside power lines, This process ensures consistent broadband connectivity through demodulation, data distribution, and interference mitigation. [3]

  1. Modulation: BPL technology utilizes specific modems to transform digital data into signals that are suitable for power line transmission. Various modulation techniques, such as frequency division multiplexing (FDM) or orthogonal frequency division multiplexing (OFDM), are employed. These techniques allow the combination of data signals with the power signals on the electrical lines.
  2. Injection: After modulating the digital data, BPL modems inject the signals to the power lines at substations or distribution points. These data signals merge with the pre-existing alternating current (AC) power signals, leveraging the existing infrastructure without the need for extra cables.
  3. Signal Propagation: The injected BPL signals propagate through the power lines, utilizing them as transmission mediums. These signals travel along the electrical wiring, making their way to the destination points, such as homes or businesses. The power lines act as conduits for the BPL signals to reach their intended receivers.
  4. Reception: At the consumer end, BPL modems receive the signals from the power lines. These modems are typically connected to routers or networking devices, allowing the distribution of the internet connection to multiple devices within the premises. The BPL modems serve as the interface between the power lines and the local area network (LAN).
  5. Demodulation: The BPL modems demodulate the received signals, separating the data packets from the power signals. This process involves extracting the original digital data from the modulated carrier signals. Demodulation allows the recovery of the transmitted information for further processing.
  6. Data Distribution: Once demodulated, the data packets are forwarded to the connected routers or networking devices. These devices handle the distribution of the internet connection to various devices within the premises, such as computers, smartphones, or smart home devices. The router or networking devices act as gateways for data transmission and reception.
  7. Repeaters and Amplifiers: In larger BPL deployments, repeaters or amplifiers may be installed along the power lines to boost the signal strength and extend coverage. These devices ensure that the BPL signals maintain sufficient quality and reach distant locations. Repeaters receive and regenerate the BPL signals, enabling their propagation over longer distances without significant degradation.
  8. Interference Mitigation: BPL systems need incorporate measures to manage interference for consistent data transmission. Specific filtering methods are utilized to address radio frequency interference (RFI) associated with BPL signals. These filters aim to limit BPL's influence on adjacent radio communications. Compliance with established regulations and industry norms ensures proper interference mitigation measures.
  9. Quality and Reliability: BPL system performance is influenced by several elements. These include the condition of the electrical wiring, proximity to BPL equipment, and potential signal interference. Maintaining high-quality wiring and a suitable signal-to-noise ratio is crucial for effective BPL functioning.

Key characteristics of BPL

  1. Utilization of existing infrastructure: One of the key characteristics of BPL is its capacity to utilize existing power lines. This avoids the demand for significant construction or additional cable installation, positioning it as an economical option for expanding broadband coverage.
  2. High-speed data communication: BPL technology enables high-speed data communication over existing power lines, offering comparable speeds to traditional wired broadband technologies like DSL or cable. This allows for efficient transmission of large amounts of data, supporting bandwidth-intensive applications.
  3. Wide coverage: The existing power grid covers a vast area, making BPL capable of reaching homes, businesses, and other locations that may be difficult to connect with other wired broadband technologies.
  4. Flexibility and scalability: BPL enables flexibility and scalability in terms of extending network coverage. Additional modems can be added at distribution points or substations to expand the reach of the BPL network. This adaptability allows for gradual expansion as demand increases or new areas require connectivity.
  5. Potential for smart grid integration: BPL can facilitate the integration of smart grid applications, enabling bidirectional communication between power utilities and consumers. It enables energy efficiency management, real-time monitoring, and the implementation of demand-response systems, leading to enhanced grid resilience and energy conservation.
  6. Coexistence with power signals: BPL operates alongside the power signals on the same power lines. It utilizes modulation techniques to ensure that the data signals do not interfere with the power grid's normal functioning. This coexistence minimizes the need for dedicated infrastructure and simplifies implementation.

Implementation challenges

Power lines were not designed for data transmission, they were created to deliver power at 50 to 60Hz. Broadband data transmitted at different frequencies and the data and electricity can travel in the same wire, however, there are several obstacles have to be overcome to enable high-speed and long-distance transmission of data on existing power lines.[ citation needed ]

Deployment of BPL has illustrated a number of fundamental challenges, the primary one being that power lines are inherently a very noisy environment. Every time a device turns on or off, it introduces a pop or click into the line. Switching power supplies often introduce noisy harmonics into the line. And unlike coaxial cable or twisted-pair, the wiring has no inherent noise rejection.

The second major issue is electromagnetic compatibility (EMC). The system was expected to use frequencies of 10 to 30 MHz in the high frequency (HF) range, used for decades by military, aeronautical, amateur radio, and by shortwave broadcasters. Power lines are unshielded and will act as antennas for the signals they carry, and they will cause interference to high frequency radio communications and broadcasting. In 2007, NATO Research and Technology Organization released a report which concluded that widespread deployment of BPL may have a "possible detrimental effect upon military HF radio communications." [9]

Deployments

There have been many attempts worldwide to implement access BPL, all which have indicated that BPL is not viable as a means of delivering broadband Internet access. This is because of two problems: limited reach, and low bandwidth which do not come close to matching ADSL, Wi-Fi, and even 3G mobile. World major providers have either limited their BPL deployments to low-bandwidth connected equipment via smart grids, or ceased BPL operations altogether.

Australia saw trials of access BPL between 2004 and 2007; but no active access BPL deployments appear to remain there. [10]

In the UK, the BBC published the results of tests to detect interference from BPL installations. [11] [12] [13]

In the US, in October 2004, the US Federal Communications Commission adopted rules to facilitate the deployment of "Access BPL", the marketing term for Internet access service over power lines.

The technical rules are more liberal than those advanced by the US national amateur radio organization, the American Radio Relay League (ARRL), and other spectrum users, but include provisions that require BPL providers to investigate and correct any interference they cause.

One service was announced in 2004 for Ohio, Kentucky, and Indiana by Current Communications [14] but they left the BPL business in 2008. [15] [16]

On August 3, 2006, FCC adopted a memorandum opinion and an order on broadband over power lines, giving the go-ahead to promote broadband service to all Americans. [17] The order rejected calls from aviation, business, commercial, amateur radio and other sectors of spectrum users to limit or prohibit deployment until further study was completed. FCC chief Kevin Martin said that BPL "holds great promise as a ubiquitous broadband solution that would offer a viable alternative to cable, digital subscriber line, fiber, and wireless broadband solutions". [18] [19]

In the US, International Broadband Electric Communications (IBEC), which had an ambitious plan to provide access BPL in the US, ceased BPL operations in January 2012. [20] [21]

On January 19, 2018, E.ON, the German multinational electric utility company serving approx. 48 million customers across different countries [*], decided to integrate BPL into their communication strategy, specifically for the smart metering communication infrastructure within the low voltage segment of their grid. E.ON chose Corinex as the solution provider for the initial two years of the deployment. The initial deployment was several ten thousand repeaters and headends, providing secure communication for a couple of hundred thousand households. Corinex GridValue energy management system based on the IBM Tivoli platform was selected to manage the network. [22]

Standards

Several standards are evolving for BPL technology including those of the IEEE, HomePlug Powerline Alliance (defunct), and PRIME Alliance.

Failure scenarios

There are many ways in which the communication signal may have error introduced into it. Interference, cross chatter, some active devices, and some passive devices all introduce noise or attenuation into the signal. When error becomes significant the devices controlled by the unreliable signal may fail, become inoperative, or operate in an undesirable fashion.

  1. Interference: Interference from nearby systems can cause signal degradation as the modem may not be able to determine a specific frequency among many signals in the same bandwidth.
  2. Signal degradation by active devices: Devices such as relays, transistors, and rectifiers create noise in their respective systems, increasing the likelihood of signal degradation. Arc-fault circuit interrupter (AFCI) devices, required by some recent electrical codes for living spaces, may also attenuate the signals. [27]
  3. Signal attenuation by passive devices: Transformers and DC–DC converters attenuate the input frequency signal almost completely. "Bypass" devices become necessary for the signal to be passed on to the receiving node. A bypass device may consist of three stages, a filter in series with a protection stage and coupler, placed in parallel with the passive device.

See also

Related Research Articles

<span class="mw-page-title-main">Orthogonal frequency-division multiplexing</span> Method of encoding digital data on multiple carrier frequencies

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

Digital subscriber line is a family of technologies that are used to transmit digital data over telephone lines. In telecommunications marketing, the term DSL is widely understood to mean asymmetric digital subscriber line (ADSL), the most commonly installed DSL technology, for Internet access.

<span class="mw-page-title-main">Frequency-shift keying</span> Data communications modulation protocol

Frequency-shift keying (FSK) is a frequency modulation scheme in which digital information is encoded on a carrier signal by periodically shifting the frequency of the carrier between several discrete frequencies. The technology is used for communication systems such as telemetry, weather balloon radiosondes, caller ID, garage door openers, and low frequency radio transmission in the VLF and ELF bands. The simplest FSK is binary FSK (BFSK), in which the carrier is shifted between two discrete frequencies to transmit binary information.

<span class="mw-page-title-main">Network topology</span> Arrangement of the elements of a communication network

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

<span class="mw-page-title-main">Cable modem</span> Broadband Internet access device

A cable modem is a type of network bridge that provides bi-directional data communication via radio frequency channels on a hybrid fibre-coaxial (HFC), radio frequency over glass (RFoG) and coaxial cable infrastructure. Cable modems are primarily used to deliver broadband Internet access in the form of cable Internet, taking advantage of the high bandwidth of a HFC and RFoG network. They are commonly deployed in the Americas, Asia, Australia, and Europe.

<span class="mw-page-title-main">Broadband</span> Data transmission terminology

In telecommunications, broadband is the wide-bandwidth data transmission that exploits signals at a wide spread of frequencies or several different simultaneous frequencies, and is used in fast internet connections. The medium can be coaxial cable, optical fiber, wireless Internet (radio), twisted pair, or satellite.

<span class="mw-page-title-main">High frequency</span> The range 3-30 MHz of the electromagnetic spectrum

High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters. Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (3.95–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

<span class="mw-page-title-main">Power-line communication</span> Type of network

Power-line communication, abbreviated as PLC, carries data on a conductor that is also used simultaneously for AC electric power transmission or electric power distribution to consumers.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

<span class="mw-page-title-main">Internet access</span> Individual connection to the Internet

Internet access is a facility or service that provides connectivity for a computer, a computer network, or other network device to the Internet, and for individuals or organizations to access or use applications such as email and the World Wide Web. Internet access is offered for sale by an international hierarchy of Internet service providers (ISPs) using various networking technologies. At the retail level, many organizations, including municipal entities, also provide cost-free access to the general public.

The S band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4 gigahertz (GHz). Thus it crosses the conventional boundary between the UHF and SHF bands at 3.0 GHz. The S band is used by airport surveillance radar for air traffic control, weather radar, surface ship radar, and some communications satellites, especially those satellites used by NASA to communicate with the Space Shuttle and the International Space Station. The 10 cm radar short-band ranges roughly from 1.55 to 5.2 GHz. The S band also contains the 2.4–2.483 GHz ISM band, widely used for low power unlicensed microwave devices such as cordless phones, wireless headphones (Bluetooth), wireless networking (WiFi), garage door openers, keyless vehicle locks, baby monitors as well as for medical diathermy machines and microwave ovens. India's regional satellite navigation network (IRNSS) broadcasts on 2.483778 to 2.500278 GHz.

Hybrid fiber-coaxial (HFC) is a broadband telecommunications network that combines optical fiber and coaxial cable. It has been commonly employed globally by cable television operators since the early 1990s.

HomePlug is the family name for various power line communications specifications under the HomePlug designation, each with unique capabilities and compatibility with other HomePlug specifications.

<span class="mw-page-title-main">DSL modem</span> Type of computer network modem; network equipment

A digital subscriber line (DSL) modem is a device used to connect a computer or router to a telephone line which provides the digital subscriber line (DSL) service for connection to the Internet, which is often called DSL broadband. The modem connects to a single computer or router, through an Ethernet port, USB port, or is installed in a computer PCI slot.

IEEE 1901 is a standard for high-speed communication devices via electric power lines, often called broadband over power lines (BPL). The standard uses transmission frequencies below 100 MHz. This standard is usable by all classes of BPL devices, including BPL devices used for the connection to Internet access services as well as BPL devices used within buildings for local area networks, smart energy applications, transportation platforms (vehicle), and other data distribution applications.

<span class="mw-page-title-main">Home network</span> Type of computer network

A home network or home area network (HAN) is a type of computer network that facilitates communication among devices within the close vicinity of a home. Devices capable of participating in this network, for example, smart devices such as network printers and handheld mobile computers, often gain enhanced emergent capabilities through their ability to interact. These additional capabilities can be used to increase the quality of life inside the home in a variety of ways, such as automation of repetitive tasks, increased personal productivity, enhanced home security, and easier access to entertainment.

Gigabit Home Networking (G.hn) is a specification for wired home networking that supports speeds up to 2 Gbit/s and operates over four types of legacy wires: telephone wiring, coaxial cables, power lines and plastic optical fiber. Some benefits of a multi-wire standard are lower equipment development costs and lower deployment costs for service providers.

<span class="mw-page-title-main">Modem</span> Device that modulates an analog carrier signal to encode digital information

A modulator-demodulator or modem is a computer hardware device that converts data from a digital format into a format suitable for an analog transmission medium such as telephone or radio. A modem transmits data by modulating one or more carrier wave signals to encode digital information, while the receiver demodulates the signal to recreate the original digital information. The goal is to produce a signal that can be transmitted easily and decoded reliably. Modems can be used with almost any means of transmitting analog signals, from light-emitting diodes to radio.

SiConnect was a powerline communications technology business that built low-cost, high performance broadband modem silicon using its proprietary POEM technology. It is most notable now for contributing its Arbitration-Determined Multiplexing technology to the IEEE P1901 draft specification for co-existence between disparate powerline technologies.

References

  1. Trull, B.R (2006). "An Overview of Broadband over Power Line" (PDF). Rivier College Online Academic Journal. 2: 1.
  2. "Telephony over Power Lines (Early History) - Engineering and Technology History Wiki". ethw.org. Archived from the original on October 3, 2019. Retrieved February 20, 2016.
  3. 1 2 "Broadband over Power Line (BPL) | Definition, Function, and Characteristics". BroadbandSearch. Retrieved August 10, 2023.
  4. Mollenkopf, J. (2004). "Presentation to Cincinnati IEEE Meeting" (PDF). Retrieved August 10, 2023.
  5. Denis Du Bois (December 9, 2004). "Broadband over Powerlines (BPL) in a Nutshell". Energy Priorities blog. Archived from the original on November 19, 2014. Retrieved November 6, 2013.
  6. Finkelstein, J. (2020). "How to decarbonize global power systems". McKinsey & Company. Retrieved August 11, 2023.
  7. Moore, P. (2021). "Traditional grids vs smart grids: why we're making the shift". Sage Automation. Retrieved August 11, 2023.
  8. Bloomberg (2018). "E.ON Chooses Corinex Broadband over Powerline Technology for their Smart Metering Rollout". Bloomberg.
  9. "HF Interference, Procedures and Tools" (PDF). Final Report of NATO RTO Information Systems Technology Panel Research Task Group IST-050/RTG-022. NATO Research and Technology Organisation. June 2007. Archived from the original (PDF) on October 25, 2007. Retrieved November 6, 2013.
  10. "Whatever happened to Broadband over Power Line? - E & T Magazine". eandt.theiet.org. October 15, 2013. Retrieved February 20, 2016.
  11. "The effects of PLT on broadcast reception". Archived from the original on August 6, 2007. Retrieved December 16, 2011.
  12. "PLT and Broadcasting". Archived from the original on March 9, 2005. Retrieved December 16, 2011.
  13. "Co-existence of PLT and Radio Services". Archived from the original on August 5, 2007. Retrieved December 16, 2011.
  14. Grant Gross (March 2, 2004). "Vendor Offers Broadband by Power Lines". PC World. Retrieved July 22, 2011.
  15. Katie Fehrenbacher (September 13, 2011). "Current's pivot: From broadband to smart grid to overseas". GigaOM. Retrieved June 13, 2012.
  16. "CURRENT Group Says Goodbye to BPL Industry". SmartGrid News. February 19, 2008. Archived from the original on March 12, 2015. Retrieved June 13, 2012.
  17. "FCC Adopts Memorandum Opinion and Order on Broadband over Power Lines to Promote Broadband Service to all Americans" (PDF). News release. August 3, 2006. Retrieved July 22, 2011.
  18. "Statement of Chairman Kevin J. Martin" (PDF). August 3, 2006. Retrieved July 22, 2011.
  19. Schwager, Andreas; Berger, Lars T. (February 2014). "PLC Electromagnetic Compatibility Regulations". In Berger, Lars T.; Schwager, Andreas; Pagani, Pascal; Schneider, Daniel M. (eds.). MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing (PDF). Devices, Circuits, and Systems. CRC Press. pp. 169–186. doi:10.1201/b16540-9. ISBN   9781466557529.
  20. Joan Engebretson (January 3, 2012). "IBEC Shutdown Deals Latest Blow to BPL". Telecompetitor. Retrieved November 6, 2013.
  21. "Nelson County Broadband Provider IBEC Drops Service". WVIR-TV. January 2, 2012. Retrieved November 6, 2013.
  22. E.ON. "The E.ON Group: a unique company". The E.ON Group. Retrieved August 10, 2023.
  23. IEEE (2005). IEEE Guide for Power-Line Carrier Applications. doi:10.1109/IEEESTD.2005.96284. ISBN   978-0-7381-4068-1.{{cite book}}: |website= ignored (help)
  24. IEEE (2008). "IEEE - Institute of Electrical and Electronics Engineers, Inc. - P1675_D7, May 2008.pdf". IEEE.
  25. IEEE (2009). "P1775/1.9.7, Mar 2009 - IEEE Draft Standard for Powerline Communication Equipment - Electromagnetic Compatibility (EMC) Requirements - Testing and Measurements Methods". IEEE.
  26. IEEE (2019). 1901a-2019 - IEEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications -- Amendment 1: Enhancement for Internet of Things Applications. doi:10.1109/IEEESTD.2019.8710016. ISBN   978-1-5044-5679-1.{{cite book}}: |website= ignored (help)
  27. A Work in Progress: Belkin Gigabit Powerline HD available at http://www.smallnetbuilder.com/lanwan/lanwan-reviews/30888-a-work-in-progress-belkin-gigabit-powerline-hd-starter-kit-reviewed?start=4