Cayley graph

Last updated
The Cayley graph of the free group on two generators a and b Cayley graph of F2.svg
The Cayley graph of the free group on two generators a and b
Graph families defined by their automorphisms
distance-transitive distance-regular strongly regular
symmetric (arc-transitive) t-transitive,t  2 skew-symmetric
(if connected)
vertex- and edge-transitive
edge-transitive and regular edge-transitive
vertex-transitive regular (if bipartite)
biregular
Cayley graph zero-symmetric asymmetric

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, [1] is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley), and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing expander graphs.

Contents

Definition

Let be a group and be a generating set of . The Cayley graph is an edge-colored directed graph constructed as follows: [2]

Not every convention requires that generate the group. If is not a generating set for , then is disconnected and each connected component represents a coset of the subgroup generated by .

If an element of is its own inverse, then it is typically represented by an undirected edge.

The set is often assumed to be finite, especially in geometric group theory, which corresponds to being locally finite and being finitely generated.

The set is sometimes assumed to be symmetric () and not containing the group identity element. In this case, the uncolored Cayley graph can be represented as a simple undirected graph.

Examples

Cayley graph of the dihedral group
D
4
{\displaystyle D_{4}}
on two generators a and b Dih 4 Cayley Graph; generators a, b.svg
Cayley graph of the dihedral group on two generators a and b
Cayley graph of
D
4
{\displaystyle D_{4}}
, on two generators which are both self-inverse Dih 4 Cayley Graph; generators b, c.svg
Cayley graph of , on two generators which are both self-inverse
Part of a Cayley graph of the Heisenberg group. (The coloring is only for visual aid.) HeisenbergCayleyGraph.png
Part of a Cayley graph of the Heisenberg group. (The coloring is only for visual aid.)
Cayley Q8 graph showing cycles of multiplication by quaternions i, j and k Cayley Q8 multiplication graph.svg
Cayley Q8 graph showing cycles of multiplication by quaternions i, j and k

Characterization

The group acts on itself by left multiplication (see Cayley's theorem). This may be viewed as the action of on its Cayley graph. Explicitly, an element maps a vertex to the vertex The set of edges of the Cayley graph and their color is preserved by this action: the edge is mapped to the edge , both having color . In fact, all automorphisms of the colored directed graph are of this form, so that is isomorphic to the symmetry group of . [note 1] [note 2]

The left multiplication action of a group on itself is simply transitive, in particular, Cayley graphs are vertex-transitive. The following is a kind of converse to this:

Sabidussi's Theorem  An (unlabeled and uncolored) directed graph is a Cayley graph of a group if and only if it admits a simply transitive action of by graph automorphisms (i.e., preserving the set of directed edges). [5]

To recover the group and the generating set from the unlabeled directed graph , select a vertex and label it by the identity element of the group. Then label each vertex of by the unique element of that maps to The set of generators of that yields as the Cayley graph is the set of labels of out-neighbors of . Since is uncolored, it might have more directed graph automorphisms than the left multiplication maps, for example group automorphisms of which permute .

Elementary properties

Schreier coset graph

If one instead takes the vertices to be right cosets of a fixed subgroup one obtains a related construction, the Schreier coset graph, which is at the basis of coset enumeration or the Todd–Coxeter process.

Connection to group theory

Knowledge about the structure of the group can be obtained by studying the adjacency matrix of the graph and in particular applying the theorems of spectral graph theory. Conversely, for symmetric generating sets, the spectral and representation theory of are directly tied together: take a complete set of irreducible representations of and let with eigenvalues . Then the set of eigenvalues of is exactly where eigenvalue appears with multiplicity for each occurrence of as an eigenvalue of

The genus of a group is the minimum genus for any Cayley graph of that group. [7]

Geometric group theory

For infinite groups, the coarse geometry of the Cayley graph is fundamental to geometric group theory. For a finitely generated group, this is independent of choice of finite set of generators, hence an intrinsic property of the group. This is only interesting for infinite groups: every finite group is coarsely equivalent to a point (or the trivial group), since one can choose as finite set of generators the entire group.

Formally, for a given choice of generators, one has the word metric (the natural distance on the Cayley graph), which determines a metric space. The coarse equivalence class of this space is an invariant of the group.

Expansion properties

When , the Cayley graph is -regular, so spectral techniques may be used to analyze the expansion properties of the graph. In particular for abelian groups, the eigenvalues of the Cayley graph are more easily computable and given by with top eigenvalue equal to , so we may use Cheeger's inequality to bound the edge expansion ratio using the spectral gap.

Representation theory can be used to construct such expanding Cayley graphs, in the form of Kazhdan property (T). The following statement holds: [8]

If a discrete group has Kazhdan's property (T), and is a finite, symmetric generating set of , then there exists a constant depending only on such that for any finite quotient of the Cayley graph of with respect to the image of is a -expander.

For example the group has property (T) and is generated by elementary matrices and this gives relatively explicit examples of expander graphs.

Integral classification

An integral graph is one whose eigenvalues are all integers. While the complete classification of integral graphs remains an open problem, the Cayley graphs of certain groups are always integral. Using previous characterizations of the spectrum of Cayley graphs, note that is integral iff the eigenvalues of are integral for every representation of .

Cayley integral simple group

A group is Cayley integral simple (CIS) if the connected Cayley graph is integral exactly when the symmetric generating set is the complement of a subgroup of . A result of Ahmady, Bell, and Mohar shows that all CIS groups are isomorphic to , or for primes . [9] It is important that actually generates the entire group in order for the Cayley graph to be connected. (If does not generate , the Cayley graph may still be integral, but the complement of is not necessarily a subgroup.)

In the example of , the symmetric generating sets (up to graph isomorphism) are

The only subgroups of are the whole group and the trivial group, and the only symmetric generating set that produces an integral graph is the complement of the trivial group. Therefore must be a CIS group.

The proof of the complete CIS classification uses the fact that every subgroup and homomorphic image of a CIS group is also a CIS group. [9]

Cayley integral group

A slightly different notion is that of a Cayley integral group , in which every symmetric subset produces an integral graph . Note that no longer has to generate the entire group.

The complete list of Cayley integral groups is given by , and the dicyclic group of order , where and is the quaternion group. [9] The proof relies on two important properties of Cayley integral groups:

Normal and Eulerian generating sets

Given a general group , a subset is normal if is closed under conjugation by elements of (generalizing the notion of a normal subgroup), and is Eulerian if for every , the set of elements generating the cyclic group is also contained in . A 2019 result by Guo, Lytkina, Mazurov, and Revin proves that the Cayley graph is integral for any Eulerian normal subset , using purely representation theoretic techniques. [10]

The proof of this result is relatively short: given an Eulerian normal subset, select pairwise nonconjugate so that is the union of the conjugacy classes . Then using the characterization of the spectrum of a Cayley graph, one can show the eigenvalues of are given by taken over irreducible characters of . Each eigenvalue in this set must be an element of for a primitive root of unity (where must be divisible by the orders of each ). Because the eigenvalues are algebraic integers, to show they are integral it suffices to show that they are rational, and it suffices to show is fixed under any automorphism of . There must be some relatively prime to such that for all , and because is both Eulerian and normal, for some . Sending bijects conjugacy classes, so and have the same size and merely permutes terms in the sum for . Therefore is fixed for all automorphisms of , so is rational and thus integral.

Consequently, if is the alternating group and is a set of permutations given by , then the Cayley graph is integral. (This solved a previously open problem from the Kourovka Notebook.) In addition when is the symmetric group and is either the set of all transpositions or the set of transpositions involving a particular element, the Cayley graph is also integral.

History

Cayley graphs were first considered for finite groups by Arthur Cayley in 1878. [2] Max Dehn in his unpublished lectures on group theory from 1909–10 reintroduced Cayley graphs under the name Gruppenbild (group diagram), which led to the geometric group theory of today. His most important application was the solution of the word problem for the fundamental group of surfaces with genus ≥ 2, which is equivalent to the topological problem of deciding which closed curves on the surface contract to a point. [11]

See also

  1. Proof: Let be an arbitrary automorphism of the colored directed graph , and let be the image of the identity. We show that for all , by induction on the edge-distance of from . Assume . The automorphism takes any -colored edge to another -colored edge . Hence , and the induction proceeds. Since is connected, this shows for all .
  2. It is easy to modify into a simple graph (uncolored, undirected) whose symmetry group is isomorphic to : replace colored directed edges of with appropriate trees corresponding to the colors.

Notes

  1. 1 2 Magnus, Wilhelm; Karrass, Abraham; Solitar, Donald (2004) [1966]. Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Courier. ISBN   978-0-486-43830-6.
  2. 1 2 Cayley, Arthur (1878). "Desiderata and suggestions: No. 2. The Theory of groups: graphical representation". American Journal of Mathematics. 1 (2): 174–6. doi:10.2307/2369306. JSTOR   2369306. In his Collected Mathematical Papers 10: 403–405.
  3. Theron, Daniel Peter (1988). An extension of the concept of graphically regular representations (Ph.D. thesis). University of Wisconsin, Madison. p. 46. MR   2636729..
  4. Bartholdi, Laurent (2017). "Growth of groups and wreath products". In Ceccherini-Silberstein, Tullio; Salvatori, Maura; Sava-Huss, Ecaterina (eds.). Groups, graphs and random walks: Selected papers from the workshop held in Cortona, June 2–6, 2014. London Math. Soc. Lecture Note Ser. Vol. 436. Cambridge Univ. Press, Cambridge. pp. 1–76. arXiv: 1512.07044 . ISBN   978-1-316-60440-3. MR   3644003.
  5. Sabidussi, Gert (October 1958). "On a class of fixed-point-free graphs". Proceedings of the American Mathematical Society . 9 (5): 800–4. doi: 10.1090/s0002-9939-1958-0097068-7 . JSTOR   2033090.
  6. See Theorem 3.7 of Babai, László (1995). "27. Automorphism groups, isomorphism, reconstruction" (PDF). In Graham, Ronald L.; Grötschel, Martin; Lovász, László (eds.). Handbook of Combinatorics. Vol. 1. Elsevier. pp. 1447–1540. ISBN   9780444823465.
  7. White, Arthur T. (1972). "On the genus of a group". Transactions of the American Mathematical Society . 173: 203–214. doi: 10.1090/S0002-9947-1972-0317980-2 . MR   0317980.
  8. Proposition 1.12 in Lubotzky, Alexander (2012). "Expander graphs in pure and applied mathematics". Bulletin of the American Mathematical Society . 49: 113–162. arXiv: 1105.2389 . doi: 10.1090/S0273-0979-2011-01359-3 .
  9. 1 2 3 Ahmady, Azhvan; Bell, Jason; Mohar, Bojan (2014). "Integral Cayley graphs and groups". SIAM Journal on Discrete Mathematics . 28 (2): 685–701. arXiv: 1307.6155 . doi:10.1137/130925487. S2CID   207067134.
  10. Guo, W.; Lytkina, D.V.; Mazurov, V.D.; Revin, D.O. (2019). "Integral Cayley graphs" (PDF). Algebra and Logic. 58 (4): 297–305. arXiv: 1808.01391 . doi:10.1007/s10469-019-09550-2. S2CID   209936465.
  11. Dehn, Max (2012) [1987]. Papers on Group Theory and Topology. Springer-Verlag. ISBN   978-1461291077. Translated from the German and with introductions and an appendix by John Stillwell, and with an appendix by Otto Schreier.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

In mathematical physics, n-dimensional de Sitter space is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere.

In statistics, the Wishart distribution is a generalization of the gamma distribution to multiple dimensions. It is named in honor of John Wishart, who first formulated the distribution in 1928. Other names include Wishart ensemble, or Wishart–Laguerre ensemble, or LOE, LUE, LSE.

In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·).

In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally, from higher sheaf cohomology groups associated to such bundles. It is built on the earlier Borel–Weil theorem of Armand Borel and André Weil, dealing just with the space of sections, the extension to higher cohomology groups being provided by Raoul Bott. One can equivalently, through Serre's GAGA, view this as a result in complex algebraic geometry in the Zariski topology.

<span class="mw-page-title-main">Compact group</span> Topological group with compact topology

In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.

In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.

<span class="mw-page-title-main">Burnside's theorem</span> Mathematics, group theory

In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.

In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Paul Dirac in 1928.

In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra , is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center of the universal enveloping algebra of a reductive Lie algebra to the elements of the symmetric algebra of a Cartan subalgebra that are invariant under the Weyl group .

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.

De-sparsified lasso contributes to construct confidence intervals and statistical tests for single or low-dimensional components of a large parameter vector in high-dimensional model.

Batch normalization is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.