Chlorosulfuric acid

Last updated
Chlorosulfuric acid
Chlorosulfuric-acid.png
Chlorosulfuric acid molecule ball.png
Chlorosulfuric acid.png
Names
IUPAC name
Sulfurochloridic acid
Other names
Chlorosulfuric acid,
Chlorosulfonic acid,
Chlorosulphonic acid,
Chlorinesulfonic acid,
Chlorinesulphonic acid,
Chloridosulfonic acid,
Chloridosulphonic acid,
Sulfuric chlorohydrin
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.304 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 232-234-6
PubChem CID
RTECS number
  • FX5730000
UNII
UN number 1754
  • InChI=1S/ClHO3S/c1-5(2,3)4/h(H,2,3,4) Yes check.svgY
    Key: XTHPWXDJESJLNJ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/ClHO3S/c1-5(2,3)4/h(H,2,3,4)
    Key: XTHPWXDJESJLNJ-UHFFFAOYAO
  • ClS(=O)(=O)O
Properties
HSO3Cl
Molar mass 116.52 g mol−1
Appearancecolorless liquid, but commercial samples usually are pale brown
Density 1.753 g cm−3
Melting point −80 °C (−112 °F; 193 K)
Boiling point 151 to 152 °C (304 to 306 °F; 424 to 425 K) (755 mmHg or 100.7 kPa)
hydrolysis
Solubility in other solventsreacts with alcohols
soluble in chlorocarbons
Acidity (pKa)5.9 (in CF3CO2H) [1]
1.433
Structure
tetrahedral
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H314, H335
P260, P261, P264, P271, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P321, P363, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard W+OX: Reacts with water in an unusual or dangerous manner AND is oxidizer
3
0
2
W
OX
Safety data sheet (SDS) ICSC 1039
Related compounds
Related compounds
Sulfuryl chloride
Sulfuric acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Chlorosulfuric acid (IUPAC name: sulfurochloridic acid) is the inorganic compound with the formula HSO3Cl. It is also known as chlorosulfonic acid, being the sulfonic acid of chlorine. It is a distillable, colorless liquid which is hygroscopic and a powerful lachrymator. Commercial samples usually are pale brown or straw colored. [3]

Contents

Salts and esters of chlorosulfuric acid are known as chlorosulfates.

Structure and properties

Chlorosulfuric acid is a tetrahedral molecule. The formula is more descriptively written SO2(OH)Cl, but HSO3Cl is traditional. It is an intermediate, chemically and conceptually, between sulfuryl chloride (SO2Cl2) and sulfuric acid (H2SO4). [4] The compound is rarely obtained pure. Upon standing with excess sulfur trioxide, it decomposes to pyrosulfuryl chlorides: [5]

2 ClSO3H + SO3 → H2SO4 + S2O5Cl2

Synthesis

The industrial synthesis entails the reaction of hydrogen chloride with a solution of sulfur trioxide in sulfuric acid: [5]

HCl + SO3 → ClSO3H

It can also be prepared by chlorination of sulfuric acid, written here for pedagogical purposes as HSO3(OH), vs. the usual format H2SO4:

PCl5 + HSO3(OH) → HSO3Cl + POCl3 + HCl

The latter method is more suited for laboratory-scale operations.

Applications

ClSO2OH is used to prepare alkyl sulfates, which are useful as detergents and as chemical intermediates:

ROH + ClSO3H → ROSO3H + HCl

An early synthesis of saccharin begins with the reaction of toluene with ClSO2OH to give the ortho- and para-toluenesulfonyl chloride derivatives:

CH3C6H5 + 2 ClSO2OH → CH3C6H4SO2Cl + H2SO4 + HCl

Oxidation of the ortho isomer gives the benzoic acid derivative that then is cyclized with ammonia and neutralized with base to afford saccharin.

Reaction with hydrogen peroxide is used to produce peroxydisulfuric acid ("persulfuric acid") and peroxydisulfates. These are used as oxidizing agents and for initiating free radical polymerization, for example to produce polytetrafluoroethylene (Teflon).

Chlorosulfonic acid has been used as an anti-contrail agent in Ryan Model 147 reconnaissance drones, [6] and to produce smoke screens. [7] [8]

Safety

ClSO3H reacts violently with water to yield sulfuric acid and hydrogen chloride, commonly seen as vapors fuming from the liquid:

ClSO3H + H2O → H2SO4 + HCl

Precautions should be taken, such as proper ventilation associated with HCl.

Related Research Articles

<span class="mw-page-title-main">Sulfuric acid</span> Chemical compound (H₂SO₄)

Sulfuric acid or sulphuric acid, known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, and hydrogen, with the molecular formula H2SO4. It is a colorless, odorless, and viscous liquid that is miscible with water.

<span class="mw-page-title-main">Oleum</span> Corrosive liquid of excess sulfur trioxide in solution.

Oleum, or fuming sulfuric acid, is a term referring to solutions of various compositions of sulfur trioxide in sulfuric acid, or sometimes more specifically to disulfuric acid.

Sulfur trioxide (alternative spelling sulphur trioxide, also known as nisso sulfan) is the chemical compound with the formula SO3. It has been described as "unquestionably the most [economically] important sulfur oxide". It is prepared on an industrial scale as a precursor to sulfuric acid.

<span class="mw-page-title-main">Hydrogen bromide</span> Chemical compound

Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C (255.7 °F). Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Sulfamic acid</span> Chemical compound

Sulfamic acid, also known as amidosulfonic acid, amidosulfuric acid, aminosulfonic acid, sulphamic acid and sulfamidic acid, is a molecular compound with the formula H3NSO3. This colourless, water-soluble compound finds many applications. Sulfamic acid melts at 205 °C before decomposing at higher temperatures to water, sulfur trioxide, sulfur dioxide and nitrogen.

<span class="mw-page-title-main">Peroxymonosulfuric acid</span> Powerful oxidizing agent

Peroxymonosulfuric acid, H
2
SO
5
, is also known as persulfuric acid, peroxysulfuric acid, or Caro's acid. In this acid, the S(VI) center adopts its characteristic tetrahedral geometry; the connectivity is indicated by the formula HO–O–S(O)2–OH. It is one of the strongest oxidants known (E0 = +2.51 V) and is highly explosive.

<span class="mw-page-title-main">Disulfuric acid</span> Chemical compound

Disulfuric acid (alternative spelling disulphuric acid) or pyrosulfuric acid (alternative spelling pyrosulphuric acid), also named oleum, is a sulfur oxoacid. It is a major constituent of fuming sulfuric acid, oleum, and this is how most chemists encounter it. As confirmed by X-ray crystallography, the molecule consists of a pair of SO2(OH) groups joined by an oxide.

<span class="mw-page-title-main">Aromatic sulfonation</span> Chemical reaction which replaces a hydrogen on an arene with sulfonic acid, –NH–SO3H

In organic chemistry, aromatic sulfonation is an organic reaction in which a hydrogen atom on an arene is replaced by a sulfonic acid functional group in an electrophilic aromatic substitution. Aryl sulfonic acids are used as detergents, dye, and drugs.

<span class="mw-page-title-main">Sulfuryl chloride</span> Chemical compound

Sulfuryl chloride is an inorganic compound with the formula SO2Cl2. At room temperature, it is a colorless liquid with a pungent odor. Sulfuryl chloride is not found in nature, as can be inferred from its rapid hydrolysis.

<span class="mw-page-title-main">Fluorosulfuric acid</span> Chemical compound

Fluorosulfuric acid (IUPAC name: sulfurofluoridic acid) is the inorganic compound with the chemical formula HSO3F. It is one of the strongest acids commercially available. It is a tetrahedral molecule and is closely related to sulfuric acid, H2SO4, substituting a fluorine atom for one of the hydroxyl groups. It is a colourless liquid, although commercial samples are often yellow.

<span class="mw-page-title-main">Potassium bisulfate</span> Chemical compound

Potassium bisulfate (potassium bisulphate) is an inorganic compound with the chemical formula KHSO4 and is the potassium acid salt of sulfuric acid. It is a white, water-soluble solid.

An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produce the H+ cation and the anion of the acid.

<span class="mw-page-title-main">Triflic acid</span> Chemical compound

Triflic acid, the short name for trifluoromethanesulfonic acid, TFMS, TFSA, HOTf or TfOH, is a sulfonic acid with the chemical formula CF3SO3H. It is one of the strongest known acids. Triflic acid is mainly used in research as a catalyst for esterification. It is a hygroscopic, colorless, slightly viscous liquid and is soluble in polar solvents.

<span class="mw-page-title-main">Nitrosyl chloride</span> Chemical compound

Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is commonly encountered as a component of aqua regia, a mixture of 3 parts concentrated hydrochloric acid and 1 part of concentrated nitric acid. It is a strong electrophile and oxidizing agent. It is sometimes called Tilden's reagent, after William A. Tilden, who was the first to produce it as a pure compound.

<span class="mw-page-title-main">Peroxydisulfuric acid</span> Persulfuric acid

Peroxydisulfuric acid is an inorganic compound with a chemical formula (HO3SO)2. Also called Marshall's acid after Professor Hugh Marshall, who discovered it in 1891.

Thiosulfuric acid is the inorganic compound with the formula H2S2O3. It has attracted academic interest as a simple, easily accessed compound that is labile. It has few practical uses.

Selenium monochloride or diselenium dichloride is an inorganic compound with the formula Se2Cl2. Although a common name for the compound is selenium monochloride, reflecting its empirical formula, IUPAC does not recommend that name, instead preferring the more descriptive diselenium dichloride.

Gold(III) sulfide or auric sulfide is an inorganic compound with the formula Au2S3. Auric sulfide has been described as a black and amorphous solid. Only the amorphous phase has been produced, and the only evidence of existence is based on thermal analysis.

References

  1. Perrin, D. D., ed. (1982) [1969]. Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution. IUPAC Chemical Data (2nd ed.). Oxford: Pergamon (published 1984). Entry 32. ISBN   0-08-029214-3. LCCN   82-16524.
  2. "New Environment Inc. - NFPA Chemicals".
  3. Cremlyn, R. J. (2002). Chlorosulfonic Acid. Royal Society of Chemistry. ISBN   978-0-85404-498-6.
  4. Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. pp. 549–550.
  5. 1 2 Maas, J.; Baunack, F. (2002). "Chlorosulfuric Acid". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a07_017. ISBN   3527306730.
  6. Method and apparatus for suppressing contrails (PDF). United States Patent and Trademark Office. 1970.
  7. The Royal Navy at War (DVD). London: Imperial War Museum. 2005.
  8. Amos, Jonathan (2018-04-11). "Nazi legacy found in Norwegian trees". BBC News Online . Retrieved 2018-04-17.