Coherent topos

Last updated

In mathematics, a coherent topos is a topos generated by a collection of quasi-compact quasi-separated objects closed under finite products. [1]

Contents

See also

Related Research Articles

In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphismf from a scheme X to a scheme Y is a morphism such that the induced map on every stalk is a flat map of rings, i.e.,

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, Cartan's theorems A and B are two results proved by Henri Cartan around 1951, concerning a coherent sheaf F on a Stein manifold X. They are significant both as applied to several complex variables, and in the general development of sheaf cohomology.

In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: XY, we can define a new sheaf fF on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of fF is given by the global sections of F. This assignment gives rise to a functor f from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.

Quasi-realism is the meta-ethical view which claims that:

  1. Ethical sentences do not express propositions.
  2. Instead, ethical sentences project emotional attitudes as though they were real properties.

In mathematics, higher category theory is the part of category theory at a higher order, which means that some equalities are replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology, where one studies algebraic invariants of spaces, such as the fundamental weak ∞-groupoid.

In category theory, a weak n-category is a generalization of the notion of strict n-category where composition and identities are not strictly associative and unital, but only associative and unital up to coherent equivalence. This generalisation only becomes noticeable at dimensions two and above where weak 2-, 3- and 4-categories are typically referred to as bicategories, tricategories, and tetracategories. The subject of weak n-categories is an area of ongoing research.

In algebraic geometry and other areas of mathematics, an ideal sheaf is the global analogue of an ideal in a ring. The ideal sheaves on a geometric object are closely connected to its subspaces.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

Noncommutative algebraic geometry is a branch of mathematics, and more specifically a direction in noncommutative geometry, that studies the geometric properties of formal duals of non-commutative algebraic objects such as rings as well as geometric objects derived from them.

In mathematics, more specifically category theory, a quasi-category is a generalization of the notion of a category. The study of such generalizations is known as higher category theory.

Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras, simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory of singular algebraic varieties and cotangent complexes in deformation theory, among the other applications.

In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states that the ∞-groupoids are spaces. If we model our ∞-groupoids as Kan complexes, then the homotopy types of the geometric realizations of these sets give models for every homotopy type. It is conjectured that there are many different "equivalent" models for ∞-groupoids all which can be realized as homotopy types.

In mathematics, the base change theorems relate the direct image and the inverse image of sheaves. More precisely, they are about the base change map, given by the following natural transformation of sheaves:

In algebraic geometry, a sheaf of algebras on a ringed space X is a sheaf of commutative rings on X that is also a sheaf of -modules. It is quasi-coherent if it is so as a module.

In algebraic geometry, a quasi-coherent sheaf on an algebraic stack is a generalization of a quasi-coherent sheaf on a scheme. The most concrete description is that it is a data that consists of, for each a scheme S in the base category and in , a quasi-coherent sheaf on S together with maps implementing the compatibility conditions among 's.

In mathematics, at the intersection of algebraic topology and algebraic geometry, there is the notion of a Hopf algebroid which encodes the information of a presheaf of groupoids whose object sheaf and arrow sheaf are represented by algebras. Because any such presheaf will have an associated site, we can consider quasi-coherent sheaves on the site, giving a topos-theoretic notion of modules. Duallypg 2, comodules over a Hopf algebroid are the purely algebraic analogue of this construction, giving a purely algebraic description of quasi-coherent sheaves on a stack: this is one of the first motivations behind the theory.

References

  1. Jacob Lurie, Categorical Logic (278x). Lecture 11. Definition 6.