Complexification

Last updated

In mathematics, the complexification of a vector space V over the field of real numbers (a "real vector space") yields a vector space VC over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for V (a space over the real numbers) may also serve as a basis for VC over the complex numbers.

Contents

Formal definition

Let be a real vector space. The complexification of V is defined by taking the tensor product of with the complex numbers (thought of as a 2-dimensional vector space over the reals):

The subscript, , on the tensor product indicates that the tensor product is taken over the real numbers (since is a real vector space this is the only sensible option anyway, so the subscript can safely be omitted). As it stands, is only a real vector space. However, we can make into a complex vector space by defining complex multiplication as follows:

More generally, complexification is an example of extension of scalars – here extending scalars from the real numbers to the complex numbers – which can be done for any field extension, or indeed for any morphism of rings.

Formally, complexification is a functor VectR → VectC, from the category of real vector spaces to the category of complex vector spaces. This is the adjoint functor – specifically the left adjoint – to the forgetful functor VectC → VectR forgetting the complex structure.

This forgetting of the complex structure of a complex vector space is called decomplexification (or sometimes "realification"). The decomplexification of a complex vector space with basis removes the possibility of complex multiplication of scalars, thus yielding a real vector space of twice the dimension with a basis [1]

Basic properties

By the nature of the tensor product, every vector v in VC can be written uniquely in the form

where v1 and v2 are vectors in V. It is a common practice to drop the tensor product symbol and just write

Multiplication by the complex number a + i b is then given by the usual rule

We can then regard VC as the direct sum of two copies of V:

with the above rule for multiplication by complex numbers.

There is a natural embedding of V into VC given by

The vector space V may then be regarded as a real subspace of VC. If V has a basis { ei } (over the field R) then a corresponding basis for VC is given by { ei ⊗ 1 } over the field C. The complex dimension of VC is therefore equal to the real dimension of V:

Alternatively, rather than using tensor products, one can use this direct sum as the definition of the complexification:

where is given a linear complex structure by the operator J defined as where J encodes the operation of “multiplication by i”. In matrix form, J is given by:

This yields the identical space – a real vector space with linear complex structure is identical data to a complex vector space – though it constructs the space differently. Accordingly, can be written as or identifying V with the first direct summand. This approach is more concrete, and has the advantage of avoiding the use of the technically involved tensor product, but is ad hoc.

Examples

Dickson doubling

The process of complexification by moving from R to C was abstracted by twentieth-century mathematicians including Leonard Dickson. One starts with using the identity mapping x* = x as a trivial involution on R. Next two copies of R are used to form z = (a , b) with the complex conjugation introduced as the involution z* = (a, −b). Two elements w and z in the doubled set multiply by

Finally, the doubled set is given a normN(z) = z* z. When starting from R with the identity involution, the doubled set is C with the norm a2 + b2. If one doubles C, and uses conjugation (a,b)* = (a*, –b), the construction yields quaternions. Doubling again produces octonions, also called Cayley numbers. It was at this point that Dickson in 1919 contributed to uncovering algebraic structure.

The process can also be initiated with C and the trivial involution z* = z. The norm produced is simply z2, unlike the generation of C by doubling R. When this C is doubled it produces bicomplex numbers, and doubling that produces biquaternions, and doubling again results in bioctonions. When the base algebra is associative, the algebra produced by this Cayley–Dickson construction is called a composition algebra since it can be shown that it has the property

Complex conjugation

The complexified vector space VC has more structure than an ordinary complex vector space. It comes with a canonical complex conjugation map:

defined by

The map χ may either be regarded as a conjugate-linear map from VC to itself or as a complex linear isomorphism from VC to its complex conjugate .

Conversely, given a complex vector space W with a complex conjugation χ, W is isomorphic as a complex vector space to the complexification VC of the real subspace

In other words, all complex vector spaces with complex conjugation are the complexification of a real vector space.

For example, when W = Cn with the standard complex conjugation

the invariant subspace V is just the real subspace Rn.

Linear transformations

Given a real linear transformation f : VW between two real vector spaces there is a natural complex linear transformation

given by

The map is called the complexification of f. The complexification of linear transformations satisfies the following properties

In the language of category theory one says that complexification defines an (additive) functor from the category of real vector spaces to the category of complex vector spaces.

The map fC commutes with conjugation and so maps the real subspace of VC to the real subspace of WC (via the map f). Moreover, a complex linear map g : VCWC is the complexification of a real linear map if and only if it commutes with conjugation.

As an example consider a linear transformation from Rn to Rm thought of as an m×n matrix. The complexification of that transformation is exactly the same matrix, but now thought of as a linear map from Cn to Cm.

Dual spaces and tensor products

The dual of a real vector space V is the space V* of all real linear maps from V to R. The complexification of V* can naturally be thought of as the space of all real linear maps from V to C (denoted HomR(V,C)). That is,

The isomorphism is given by

where φ1 and φ2 are elements of V*. Complex conjugation is then given by the usual operation

Given a real linear map φ : VC we may extend by linearity to obtain a complex linear map φ : VCC. That is,

This extension gives an isomorphism from HomR(V,C) to HomC(VC,C). The latter is just the complex dual space to VC, so we have a natural isomorphism:

More generally, given real vector spaces V and W there is a natural isomorphism

Complexification also commutes with the operations of taking tensor products, exterior powers and symmetric powers. For example, if V and W are real vector spaces there is a natural isomorphism

Note the left-hand tensor product is taken over the reals while the right-hand one is taken over the complexes. The same pattern is true in general. For instance, one has

In all cases, the isomorphisms are the “obvious” ones.

See also

Related Research Articles

<span class="mw-page-title-main">Associative algebra</span> Algebraic structure with (a + b)(c + d) = ac + ad + bc + bd and (a)(bc) = (ab)(c)

In mathematics, an associative algebraA is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on , together with the vector space structure of pointwise addition and scalar multiplication by constants.

The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.

<span class="mw-page-title-main">Spinor</span> Non-tensorial representation of the spin group; represents fermions in physics

In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation. Unlike vectors and tensors, a spinor transforms to its negative when the space is continuously rotated through a complete turn from 0° to 360°. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors.

In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted

<span class="mw-page-title-main">Complex conjugate</span> Fundamental operation on complex numbers

In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, the complex conjugate of is equal to The complex conjugate of is often denoted as or .

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

<span class="mw-page-title-main">Vector bundle</span> Mathematical parametrization of vector spaces by another space

In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space : to every point of the space we associate a vector space in such a way that these vector spaces fit together to form another space of the same kind as , which is then called a vector bundle over .

In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra.

In mathematics, the Gelfand representation in functional analysis is either of two things:

<span class="mw-page-title-main">Tensor product of algebras</span> Tensor product of algebras over a field; itself another algebra

In mathematics, the tensor product of two algebras over a commutative ring R is also an R-algebra. This gives the tensor product of algebras. When the ring is a field, the most common application of such products is to describe the product of algebra representations.

In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

In mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, −I. Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to regard V as a complex vector space.

In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.

In mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms.

In mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature. More precisely, they are two equivalent representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields.

In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989).

In mathematics, a real structure on a complex vector space is a way to decompose the complex vector space in the direct sum of two real vector spaces. The prototype of such a structure is the field of complex numbers itself, considered as a complex vector space over itself and with the conjugation map , with , giving the "canonical" real structure on , that is .

<span class="mw-page-title-main">Complexification (Lie group)</span> Universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

References

  1. Kostrikin, Alexei I.; Manin, Yu I. (July 14, 1989). Linear Algebra and Geometry. CRC Press. p. 75. ISBN   978-2881246838.