Condylostoma

Last updated

Contents

Condylostoma
FMIB 40855 Condylostoma patens.jpeg
Condylostoma patens
Scientific classification
Domain:
(unranked):
SAR
(unranked):
Phylum:
Class:
Order:
Family:
Genus:
Condylostoma

Condylostoma is a genus of unicellular ciliate protists, belonging to the class Heterotrichea.

Condylostoma is a genus of heterotrichous made up of large ciliated cells. The genus was discovered by Jean Baptiste Bory de Saint-Vincent in 1826, and over 20 species have been described since then. They are mostly marine, but some are found in freshwater lakes, and they have habitats around the globe. Morphologically they are large cells with a buccal groove that is about one third of their total length, and they are covered in cilia which grow out of their longitudinal rows of kineties. They have an adoral zone of membranelles (AZM) around the buccal groove to help capture food, but no cilia are present in the groove itself. Another feature of note is their altered genetic code. Condylostoma includes mostly benthic organisms that spend most of their time gliding along substrate looking for food. They can eat many smaller organisms between 5 μm and 40 μm in size and are the prey of zooplankton and insects. Not only do they have an important role in their food webs, but they can also cause issues for humans due to their impacts on coral reefs and bivalve larvae.

Etymology and history of knowledge

Condylostoma was discovered in 1826 by Jean Baptiste Bory de Saint-Vincent. The name originates from the Latin words condyle, meaning rounded end, and stoma, meaning a bodily opening. Since then much research has been done on the genus and over 20 species have been discovered through the use of both morphological and molecular data.

Habitat and ecology

Condylostoma have been found around the world. Interestingly, most newly reported species from this genus seem to originate from brackish and tropical areas of Asia and Africa. In terms of habitat, they are mostly found in marine environments but some have been found in freshwater. In addition to being found in the ocean, they are known to inhabit the Alkaline-saline lakes, or soda lakes, in tropical Africa. [1] These lakes are only inhabited by a few groups of organisms due to their relatively extreme environment. Not only can these lakes reach up to 50 °C, but they also have low oxygen solubility and high pHs ranging from 9-12, [1] something that showcases Condylostoma's adaptability to different environments.

Condylostoma can feed on a large variety of sources between 5 μm and 40 μm in diameter, but they are not able to ingest filamentous organisms or organisms with large spines. Interestingly, they seem to show a preference for particular species, including the green aglae Kirchneriella, Dictyosphaerium, Chlamydomonas, and Cryptomanas while rejecting cyanobacteria like Dactylococcopsis, Aphanizomenan, Synedra, and Melosira. [2] Nevertheless the main factor in its food selection seems to be morphological features like size and shape and not the taxon of the prey and there is no preference for green algae over diatoms for example). More specifically Condylostoma seems to prefer slightly larger organisms around 15 μm to 30 μm. [2] In turn, Condylostoma have many predators, including zooplankton and insects. [2] [3] This makes them an important part of the food web as they affect many species and different types of organisms, and provide a link between bacteria and zooplankton in the food web alongside other protists.

Description of the organism

Morphology

Condylostoma are very large elongated unicellular ciliates with lengths ranging from 176 to 1600 μm. [4] [5] They also tend to be about 7 times longer than their width. [4] [6] While the shape of the cell can vary depending on many factors, especially the amount and size of food vacuoles present, they are normally more rounded towards the middle of the cell and have a blunt posterior end. The relatively small buccal groove is about 13 the size of total body length and is present ventrally on the anterior part of the cell. The buccal groove is triangular. While there are no cilia inside the groove the surrounding "lips" are covered in cilia. Early papers describe a thin transparent undulating membrane around the buccal groove which is now known to be the adoral zone of membranes (AZM). These membranes can be composed of 70 to 200 polykinetids. [7] They have a very elastic thin pellicula (membrane) surrounding the cell which can be 2 to 8 μm depending on the section. The cells are covered in longitudinal myonemes, which help make them contractile, and have trichocysts present in the posterior end of the cells. Being ciliates they are covered in cilia except in the buccal funnel. [4] The cilia are oriented following the myonemes in rows. While the number of kinetosomes do not change during interphase, the length of the kineties do, to accommodate for the cell's change in size. [7] Their cilia are long and slender, with the posterior cilia being the longest. Additionally, some research states that the ventral side of the cell has fewer, longer cilia than the dorsal end but this has been disputed. [1] [4] Additionally many species were found to have at least one frontal cirrus with some having up to four present. [8] Looking at the interior of the cell, they are full of food vacuoles as well as cortical granules. They have a macronucleus with differing numbers of nodules ranging from 6 to 120. [1] [4] The pellicle of the cells is rough and dark grey, with randomly dispersed granules directly below it. The cell itself is almost colorless but has a slightly grey or yellow tinge to it. [3] No contractile vacuole was observed at least in the marine species. The cells in this genus are notoriously hard to identify for two main reasons. First, there are many morphological differences between the species in this genus making it hard to identify them as belonging to the Condylostoma genus. Second, the species that have been described do not have as much detail as would be needed given the fact that there are few character states, otherwise known as traits, that can be used to identify cells as belonging to this genus. [4]

Movement

These are mostly benthic organisms that glide along the sediment. The gliding is done by beating the cilia throughout their body, and interestingly the dorsal cilia tend to beat more slowly than the rest. They mostly glide forward but can turn by adjusting the posterior end of the cell, making it act as a rudder. Their standard gliding velocity is around 1mm per 2.9 seconds but they can speed up to 3 times that velocity when stimulated. [4] Cells can also swim but are seldom seen doing this. They tend to swim in a spiral pattern due to the asymmetry of their body. When both gliding and swimming the organism has been observed to stop and move backwards when touching an object. [9]

Genetics

Many ciliates use a slightly alternate genetic code compared to other eukaryotes. In the case of Condylostoma, stop codons have been reassigned to code for an amino acid . [6] For these new substitutions TAA and TAG code for glutamine and TGA codes for tryptophan. The question then becomes how does Condylostoma stop translation? The answer seems to be that these codons can function both as stop codons and as normal amino acid encoders. In this case whether or not translation is ended seems to be dependent on the location of the "stop codon" in the transcript and how close they are to the 3 end of the mRNA.

Genetic codeTranslation
table
CodonConditional
translation
Standard translation
DNARNA
Condylostoma nuclear 28TAAUAATer(*)orGln(Q)Ter(*)
TAGUAGTer(*)orGln(Q)Ter(*)
TGAUGATer(*)orTrp(W)Ter(*)
Amino-acid biochemical propertiesNonpolarPolarTermination: stop codon

Life Cycles

Condylostoma tends to be fairly slow-growing when compared to other protists. They demonstrated to have a lifespan of around 6 days in their normal form, but that they could encyst if they were starved or stressed. [10] It is hypothesized that this is due to the fact that they feed mostly on algae. This is an abundant, yet seasonal food source, so they need to be able to survive during parts of the year when algae may not be present in high quantities, or may not be present at all. Division in these cells starts with the macronucleus beads fusing to form a band before they divide in two. Some of the polykinetids are passed onto the daughter cell and then renewed in the posterior position. Both the frontal cirri and paroral membranes need to be formed in the daughter cell. [3]

Practical importance

Condylostoma has been found to feed on the larvae of bivalves like oysters and clams. While this was only seen in a laboratory, each ciliate could ingest up to 7 larvae. At the moment the two have fairly separate niches in the wild, but if that were to change, or if Condylostoma invades a bivalve farm that could prove to have severe impacts. [11] Condylostoma have also been tied to deteriorating coral reefs in some areas (alongside other protists). While the exact cause is not known, the current hypotheses are either that the organisms eat the bacteria that help the coral form or that they can spread bacterial diseases to the coral. In either of these cases, this can have a severe impact on the already fragile ecosystems of coral reefs. [12]

Species list

According to the World Register of Marine Species, genus Condylostoma contains 24 species: [13]

Phylogeny

Molecular analyses based on either a single locus (small subunit rRNA) or several loci (SSU rDNA, large subunit rRNA, ITS1-5.8S-ITS2 region, alpha-tubulin and COI) showed that Condylostoma is phylogenetically related to the genera Condylostentor and Chattonidium , and with Condylostomides possibly being their sister-group. [14] [15] [16]

Related Research Articles

<i>Paramecium</i> Genus of unicellular ciliates, commonly studied as a representative of the ciliate group

Paramecium is a genus of eukaryotic, unicellular ciliates, commonly studied as a model organism of the ciliate group. Paramecium are widespread in freshwater, brackish, and marine environments and are often abundant in stagnant basins and ponds. Because some species are readily cultivated and easily induced to conjugate and divide, they have been widely used in classrooms and laboratories to study biological processes. The usefulness of Paramecium as a model organism has caused one ciliate researcher to characterize it as the "white rat" of the phylum Ciliophora.

<i>Blepharisma</i> Genus of single-celled organisms

Blepharisma is a genus of unicellular ciliate protists found in fresh and salt water. The group includes about 40 accepted species, and many sub-varieties and strains. While species vary considerably in size and shape, most are easily identified by their red or pinkish color, which is caused by granules of the pigment blepharismin.

<i>Stylonychia</i> Genus of single-celled organisms

Stylonychia is a genus of ciliates, in the subclass Hypotrichia. Species of Stylonychia are very common in fresh water and soil, and may be found on filamentous algae, surface films, and among particles of sediment. Like other Hypotrichs, Stylonychia has cilia grouped into membranelles alongside the mouth and cirri over the body. It is distinguished partly by long cirri at the posterior, usually a cluster of three. The largest can just be seen at a 25x magnification, and the smallest can just be seen at a 450x magnification.

<span class="mw-page-title-main">Oligotrich</span> Subclass of single-celled organisms

The oligotrichs are a group of ciliates, included among the spirotrichs. They have prominent oral cilia, which are arranged as a collar and lapel, in contrast to the choreotrichs where they form a complete circle. The body cilia are reduced to a girdle and ventral cilia. In Halteria and its relatives, they form bristles or cirri; however these forms may be closer relatives of the stichotrichs than of other oligotrichs. These organisms are very common in plankton communities, especially in marine systems. Usually found in concentrations of about 1 per ml, they are the most important herbivores in the sea, the first link in the food chain.

<i>Stentor</i> (ciliate) Genus of single-celled organisms

Stentor, sometimes called trumpet animalcules, are a genus of filter-feeding, heterotrophic ciliates, representative of the heterotrichs. They are usually horn-shaped, and reach lengths of two millimeters; as such, they are among the largest known extant unicellular organisms. They reproduce asexually through binary fission.

<i>Vorticella</i> Genus of single-celled organisms

Vorticella is a genus of bell-shaped ciliates that have stalks to attach themselves to substrates. The stalks have contractile myonemes, allowing them to pull the cell body against substrates. The formation of the stalk happens after the free-swimming stage.

<i>Spirostomum</i> Genus of ciliated protists

Spirostomum is a genus of ciliated protists in the class Heterotrichea. It is known for being very contractile. Having been first identified by Christian Gottfried Ehrenberg in 1834, further research has identified eight additional true morphospecies. This bacterivore genus mainly lives in the sediment deposits at the bottom of various aquatic habitats, and members possess rquA genes that could be responsible for their ability to survive in these hypoxic and anoxic environments. They are identifiable by their relatively large tubular/flat vermiform bodies. Their life cycle consists of a growth stage, in which they mature, and asexual and sexual reproduction stages. Some species are model organisms for studies on human pathogenic bacteria, while others are sensitive and accurate bioindicators for toxic substances.

<i>Paramecium caudatum</i> Species of single-celled organism

Paramecium caudatum is a species of unicellular protist in the phylum Ciliophora. They can reach 0.33 mm in length and are covered with minute hair-like organelles called cilia. The cilia are used in locomotion and feeding. The species is very common, and widespread in marine, brackish and freshwater environments.

Karyorelictea is a class of ciliates in the subphylum Postciliodesmatophora. Most species are members of the microbenthos community, that is, microscopic organisms found in the marine interstitial habitat, though one genus, Loxodes, is found in freshwater.

<span class="mw-page-title-main">Ciliate</span> Taxon of protozoans with hair-like organelles called cilia

The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group and are variously used in swimming, crawling, attachment, feeding, and sensation.

Halofolliculina corallasia is a species of heterotrich ciliates identified as a cause of the syndrome called skeletal eroding band (SEB). It is the first coral disease pathogen that is a protozoan as well as the first known to be a eukaryote; all others identified are bacteria. Like other members of the folliculinid family, H. corallasia is sessile and lives in a "house" called a lorica, into which the cell can retreat when disturbed. The mouth is flanked by a pair of wing-like projections that are fringed with polykinetids, groups of cilia that work in groups to produce a current that draws food into the "mouth".

<i>Frontonia</i> Genus of single-celled organisms

Frontonia is a genus of free-living unicellular ciliate protists, belonging to the order Peniculida. As Peniculids, the Frontonia are closely related to members of the genus Paramecium. However, whereas Paramecia are mainly bacterivores, Frontonia are capable of ingesting large prey such as diatoms, filamentous algae, testate amoebas, and even, in some circumstances, members of their own species. In bacteria-rich saprobic conditions, Frontonia leucas can live as a facultative bacterivore.

<i>Dileptus</i> Genus of single-celled organisms

Dileptus is a genus of unicellular ciliates in the class Litostomatea. Species of Dileptus occur in fresh and salt water, as well as mosses and soils. Most are aggressive predators equipped with long, mobile proboscides lined with toxic extrusomes, with which they stun smaller organisms before consuming them. Thirteen species and subspecies of Dileptus are currently recognized.

<i>Colpidium colpoda</i> Species of protozoan

Colpidium colpoda are free-living ciliates commonly found in many freshwater environments including streams, rivers, lakes and ponds across the world. Colpidium colpoda is also frequently found inhabiting wastewater treatment plants. This species is used as an indicator of water quality and waste treatment plant performance.

<span class="mw-page-title-main">Armophorea</span> Class of single-celled organisms

Armophorea is a class of ciliates in the subphylum Intramacronucleata. . It was first resolved in 2004 and comprises three orders: Metopida, Clevelandellida, and Armophorida. Previously members of this class were thought to be heterotrichs because of similarities in morphology, most notably a characteristic dense arrangement of cilia surrounding their oral structures. However, the development of genetic tools and subsequent incorporation of DNA sequence information has led to major revisions in the evolutionary relationships of many protists, including ciliates. Metopids, clevelandellids, and armophorids were grouped into this class based on similarities in their small subunit rRNA sequences, making them one of two so-called "riboclasses" of ciliates, however, recent analyses suggest that Armophorida may not be related to the other two orders.

<i>Licnophora</i> Genus of single-celled organisms

Licnophora is a genus of ciliates in the family Licnophoridae. They typically have an hourglass-like shape and live as ectocommensals on marine animals.

<i>Tracheloraphis</i> Genus of single-celled organisms

Tracheloraphis is a genus of ciliates in the family Trachelocercidae.

Miamiensis avidus is a species of unicellular marine eukaryote that is a parasite of many different types of fish. It is one of several organisms known to cause the fish disease scuticociliatosis and is considered an economically significant pathogen of farmed fish. M. avidus is believed to be the cause of a 2017 die-off of fish and sharks in the San Francisco Bay.

<i>Halteria</i> Genus of single-celled organisms

Halteria, sometimes referred to as the jumping oligotrich, is a genus of common planktonic ciliates that are found in many freshwater environments. Halteria are easy to locate due to their abundance and distinctive behaviour with observations of Halteria potentially dating back to the 17th century and the discovery of microorganisms. Over time more has been established about their morphology and behavior, which has led to many changes in terms of classification.

Legendrea bellerophon is a rare species of freshwater anaerobic ciliate.

References

  1. 1 2 3 4 Mengistou S (2016). "Invertebrates of East African Soda Lakes". In Schagerl M (ed.). Soda Lakes of East Africa. Cham: Springer International Publishing. pp. 205–226. doi:10.1007/978-3-319-28622-8_8. ISBN   978-3-319-28620-4.
  2. 1 2 3 Takamura N, Yasuno M (1983). "Food Selection of the Ciliated Protozoa, Condylostoma vorticella (Ehrenberg) in Lake Kasumigaura". Japanese Journal of Limnology (Rikusuigaku Zasshi) (in Japanese). 44 (3): 184–189. doi: 10.3739/rikusui.44.184 . ISSN   0021-5104. S2CID   87019898.
  3. 1 2 3 Shao C, Song W, Hu X, Ma H, Zhu M, Wang M (March 2006). "Cell division and morphology of the marine ciliate, Condylostoma spatiosum Ozaki and Yagiu (Ciliophora, Heterotrichida) based on a Chinese population". European Journal of Protistology. 42 (1): 9–19. doi:10.1016/j.ejop.2005.09.002. PMID   17070747.
  4. 1 2 3 4 5 6 7 Bovard J (1923). "The Structure and Movements of Condylostoma patens". University of California Publications. 14.
  5. Yan Y, Chen X, Chen X, Gao F, Al-Farraj SA, Al-Rasheid KA (February 2015). "Morphology and molecular phylogeny of three marine Condylostoma species from China, including two new ones (Ciliophora, Heterotrichea)". European Journal of Protistology. 51 (1): 66–78. doi:10.1016/j.ejop.2014.11.001. PMID   25553552.
  6. 1 2 Heaphy SM, Mariotti M, Gladyshev VN, Atkins JF, Baranov PV (November 2016). "Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons in Condylostoma magnum". Molecular Biology and Evolution. 33 (11): 2885–2889. doi:10.1093/molbev/msw166. PMC   5062323 . PMID   27501944.
  7. 1 2 De Terra N (1972). "Kinetosome Production in Condylostoma Occurs During Cell Division*". The Journal of Protozoology. 19 (4): 602–603. doi:10.1111/j.1550-7408.1972.tb03539.x.
  8. Kim JH, Jang SW, Shin MK (2012-07-31). "Morphological Redescriptions of Three Condylostoma Ciliates (Heterotrichida: Condylostomatidae) New to Korea". Animal Systematics, Evolution and Diversity. 28 (3): 149–160. doi: 10.5635/ASED.2012.28.3.149 . S2CID   86059896.
  9. Song W, Warren A, Ji D, Wang M, Al-Rasheid KA (2003). "New contributions to two heterotrichous ciliates, Folliculina simplex (Dons, 1917), Condylostoma curva Burkovsky, 1970 and one licnophorid, Licnophora lyngbycola Fauré-Fremiet, 1937 (Protozoa, Ciliophora): descriptions of morphology and infraciliature". The Journal of Eukaryotic Microbiology. 50 (6): 449–462. doi:10.1111/j.1550-7408.2003.tb00271.x. PMID   14733437.
  10. Jackson KM, Berger J (1985). "Life History Attributes of Some Ciliated Protozoa" . Transactions of the American Microscopical Society. 104 (1): 52–63. doi:10.2307/3226356. JSTOR   3226356.
  11. Loosanoff VL (January 1959). "Condylostoma--an Enemy of Bivalve Larvae". Science. 129 (3342): 147. Bibcode:1959Sci...129..147L. doi:10.1126/science.129.3342.147. PMID   17745325. S2CID   29380105.
  12. Sweet MJ, Séré MG (2016). "Ciliate communities consistently associated with coral diseases". Journal of Sea Research. 113: 119–131. Bibcode:2016JSR...113..119S. doi:10.1016/j.seares.2015.06.008.
  13. "WoRMS - World Register of Marine Species - Condylostoma Bory de St. Vincent, 1824". www.marinespecies.org. Retrieved 2017-01-20.
  14. Guo W, Song W, Al-Rasheid KA, Shao C, Miao M, Al-Farraj SA, et al. (2008-09-10). "Phylogenetic position of three Condylostoma species (Protozoa, Ciliophora, Heterotrichea) inferred from the small subunit rRNA gene sequence". Progress in Natural Science. 18 (9): 1089–1093. doi: 10.1016/j.pnsc.2008.04.003 .
  15. Yan Y, Chen X, Chen X, Gao F, Al-Farraj SA, Al-Rasheid KA (February 2015). "Morphology and molecular phylogeny of three marine Condylostoma species from China, including two new ones (Ciliophora, Heterotrichea)". European Journal of Protistology. 51 (1): 66–78. doi:10.1016/j.ejop.2014.11.001. PMID   25553552.
  16. Fernandes NM, Paiva T, da Silva-Neto ID, Schlegel M, Schrago CG (February 2016). "Expanded phylogenetic analyses of the class Heterotrichea (Ciliophora, Postciliodesmatophora) using five molecular markers and morphological data". Molecular Phylogenetics and Evolution. 95: 229–246. doi: 10.1016/j.ympev.2015.10.030 . PMID   26549427.