Continuous reactor

Last updated

Continuous reactors (alternatively referred to as flow reactors) carry material as a flowing stream. Reactants are continuously fed into the reactor and emerge as continuous stream of product. Continuous reactors are used for a wide variety of chemical and biological processes within the food, chemical and pharmaceutical industries. A survey of the continuous reactor market will throw up a daunting variety of shapes and types of machine. Beneath this variation however lies a relatively small number of key design features which determine the capabilities of the reactor. When classifying continuous reactors, it can be more helpful to look at these design features rather than the whole system.

Contents

Batch versus continuous

Reactors can be divided into two broad categories, batch reactors and continuous reactors. [1] Batch reactors are stirred tanks sufficiently large to handle the full inventory of a complete batch cycle. In some cases, batch reactors may be operated in semi batch mode where one chemical is charged to the vessel and a second chemical is added slowly. Continuous reactors are generally smaller than batch reactors and handle the product as a flowing stream. Continuous reactors may be designed as pipes with or without baffles or a series of interconnected stages. The advantages of the two options are considered below.

Benefits of batch reactors

Benefits of continuous reactors

Heat transfer capacity

The rate of heat transfer within a reactor can be determined from the following relationship:

where:

qx: the heat liberated or absorbed by the process (W)
U: the heat transfer coefficient of the heat exchanger (W/(m2K))
A: the heat transfer area (m2)
Tp: process temperature (K)
Tj: jacket temperature (K)

From a reactor design perspective, heat transfer capacity is heavily influenced by channel size since this determines the heat transfer area per unit volume. Channel size can be categorised in various ways however in broadest terms, the categories are as follows:

Industrial batch reactors: 1–10 m2/m3 (depending on reactor capacity)

Laboratory batch reactors: 10–100 m2/m3 (depending on reactor capacity)

Continuous reactors (non-micro): 100–5,000 m2/m3 (depending on channel size)

Micro reactors: 5,000–50,000 m2/m3 (depending on channel size)

Small diameter channels have the advantage of high heat transfer capacity. Against this however they have lower flow capacity, higher pressure drop and an increased tendency to block. In many cases, the physical structure and fabrication techniques for micro reactors make cleaning and unblocking very difficult to achieve.

Temperature control

Temperature control is one of the key functions of a chemical reactor. [3] Poor temperature control can severely affect both yield and product quality. It can also lead to boiling or freezing within the reactor which may stop the reactor from working altogether. In extreme cases, poor temperature control can lead to severe over pressure which can be destructive on the equipment and potentially dangerous.

Single stage systems with high heating or cooling flux

In a batch reactor, good temperature control is achieved when the heat added or removed by the heat exchange surface (qx) equals the heat generated or absorbed by the process material (qp). For flowing reactors made up of tubes or plates, satisfying the relationship qx = qp does not deliver good temperature control since the rate of process heat liberation/absorption varies at different points within the reactor. Controlling the outlet temperature does not prevent hot/cold spots within the reactor. Hot or cold spots caused by exothermic or endothermic activity can be eliminated by relocating the temperature sensor (T) to the point where the hot/cold spots exists. This however leads to overheating or overcooling downstream of the temperature sensor.

Many different types of plate or tube reactors use simple feed back control of the product temperature. From a user’s perspective, this approach is only suitable for processes where the effects of hot/cold spots do not compromise safety, quality or yield.

Single stage systems with low heating or cooling flux

Micro reactors can be tube or plates and have the key feature of small diameter flow channels (typically less than <1 mm). The significance of micro reactors is that the heat transfer area (A) per unit volume (of product) is very large. A large heat transfer area means that high values of qx can be achieved with low values of Tp – Tj. The low value of Tp – Tj limits the extent of over cooling that can occur. Thus the product temperature can be controlled by regulating the temperature of the heat transfer fluid (or the product).

The feedback signal for controlling the process temperature can be the product temperature or the heat transfer fluid temperature. It is often more practical to control the temperature of the heat transfer fluid.

Although micro reactors are efficient heat transfer devices, the narrow channels can result in high pressure drops, limited flow capacity and a tendency to block. They are also often fabricated in a manner which makes cleaning and dismantling difficult or impossible.

Multistage systems with high heating or cooling flux

Conditions within a continuous reactor change as the product passes along the flow channel. In an ideal reactor the design of the flow channel is optimised to cope with this change. In practice, this is achieved by breaking the reactor into a series of stages. Within each stage the ideal heat transfer conditions can be achieved by varying the surface to volume ratio or the cooling/heating flux. Thus stages where process heat output is very high either use extreme heat transfer fluid temperatures or have high surface to volume ratios (or both). By tackling the problem as a series of stages, extreme cooling/heating conditions to be employed at the hot/cold spots without suffering overheating or overcooling elsewhere. The significance of this is that larger flow channels can be used. Larger flow channels are generally desirable as they permit higher rate, lower pressure drop and a reduced tendency to block.

Mixing

Mixing is another important classifying feature for continuous reactors. Good mixing improves the efficiency of heat and mass transfer.

In terms of trajectory through the reactor, the ideal flow condition for a continuous reactor is plug flow (since this delivers uniform residence time within the reactor). There is however a measure of conflict between good mixing and plug flow since mixing generates axial as well as radial movement of the fluid. In tube type reactors (with or without static mixing), adequate mixing can be achieved without seriously compromising plug flow. For this reason, these types of reactor are sometimes referred to as plug flow reactors.

Continuous reactors can be classified in terms of the mixing mechanism as follows:

Mixing by diffusion

Diffusion mixing relies on concentration or temperature gradients within the product. This approach is common with micro reactors where the channel thicknesses are very small and heat can be transmitted to and from the heat transfer surface by conduction. In larger channels and for some types of reaction mixture (especially immiscible fluids), mixing by diffusion is not practical.

Mixing with the product transfer pump

In a continuous reactor, the product is continuously pumped through the reactor. This pump can also be used to promote mixing. If the fluid velocity is sufficiently high, turbulent flow conditions exist (which promotes mixing). The disadvantage with this approach is that it leads to long reactors with high pressure drops and high minimum flow rates. This is particularly true where the reaction is slow or the product has high viscosity. This problem can be reduced with the use of static mixers. Static mixers are baffles in the flow channel which are used to promote mixing. They are able to work with or without turbulent conditions. Static mixers can be effective but still require relatively long flow channels and generate relatively high pressure drops. The oscillatory baffled reactor is specialised form of static mixer where the direction of process flow is cycled. This permits static mixing with low net flow through the reactor. This has the benefit of allowing the reactor to be kept comparatively short.

Mixing with a mechanical agitator

Some continuous reactors use mechanical agitation for mixing (rather than the product transfer pump). Whilst this adds complexity to the reactor design, it offers significant advantages in terms of versatility and performance. With independent agitation, efficient mixing can be maintained irrespective of product throughput or viscosity. It also eliminates the need for long flow channels and high pressure drops.

One less desirable feature associated with mechanical agitators is the strong axial mixing they generate. This problem can be managed by breaking up the reactor into a series of mixed stages separated by small plug flow channels.

The most familiar form of continuous reactor of this type is the continuously stirred tank reactor (CSTR). This is essentially a batch reactor used in a continuous flow. The disadvantage with a single stage CSTR is that it can be relatively wasteful on product during start up and shutdown. The reactants are also added to a mixture which is rich in product. For some types of process, this can affect quality and yield. These problems are managed by using multi stage CSTRs. At the large scale, conventional batch reactors can be used for the CSTR stages.

See also

Related Research Articles

<span class="mw-page-title-main">Dispersity</span> Measure of heterogeneity of particle or molecular sizes

In chemistry, the dispersity is a measure of the heterogeneity of sizes of molecules or particles in a mixture. A collection of objects is called uniform if the objects have the same size, shape, or mass. A sample of objects that have an inconsistent size, shape and mass distribution is called non-uniform. The objects can be in any form of chemical dispersion, such as particles in a colloid, droplets in a cloud, crystals in a rock, or polymer macromolecules in a solution or a solid polymer mass. Polymers can be described by molecular mass distribution; a population of particles can be described by size, surface area, and/or mass distribution; and thin films can be described by film thickness distribution.

<span class="mw-page-title-main">Mixing (process engineering)</span> Process of mechanically stirring a heterogeneous mixture to homogenize it

In industrial process engineering, mixing is a unit operation that involves manipulation of a heterogeneous physical system with the intent to make it more homogeneous. Familiar examples include pumping of the water in a swimming pool to homogenize the water temperature, and the stirring of pancake batter to eliminate lumps (deagglomeration).

<span class="mw-page-title-main">Microreactor</span>

A microreactor or microstructured reactor or microchannel reactor is a device in which chemical reactions take place in a confinement with typical lateral dimensions below 1 mm; the most typical form of such confinement are microchannels. Microreactors are studied in the field of micro process engineering, together with other devices in which physical processes occur. The microreactor is usually a continuous flow reactor. Microreactors can offer many advantages over conventional scale reactors, including improvements in energy efficiency, reaction speed and yield, safety, reliability, scalability, on-site/on-demand production, and a much finer degree of process control.

<span class="mw-page-title-main">Chemical reactor</span> Enclosed volume where interconversion of compounds takes place

A chemical reactor is an enclosed volume in which a chemical reaction takes place. In chemical engineering, it is generally understood to be a process vessel used to carry out a chemical reaction, which is one of the classic unit operations in chemical process analysis. The design of a chemical reactor deals with multiple aspects of chemical engineering. Chemical engineers design reactors to maximize net present value for the given reaction. Designers ensure that the reaction proceeds with the highest efficiency towards the desired output product, producing the highest yield of product while requiring the least amount of money to purchase and operate. Normal operating expenses include energy input, energy removal, raw material costs, labor, etc. Energy changes can come in the form of heating or cooling, pumping to increase pressure, frictional pressure loss or agitation.

Micro process engineering is the science of conducting chemical or physical processes inside small volumina, typically inside channels with diameters of less than 1 mm (microchannels) or other structures with sub-millimeter dimensions. These processes are usually carried out in continuous flow mode, as opposed to batch production, allowing a throughput high enough to make micro process engineering a tool for chemical production. Micro process engineering is therefore not to be confused with microchemistry, which deals with very small overall quantities of matter.

<span class="mw-page-title-main">Chemical plant</span> Industrial process plant that manufactures chemicals

A chemical plant is an industrial process plant that manufactures chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials. Chemical plants use specialized equipment, units, and technology in the manufacturing process. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies that have similarities to chemical plant technology such as fluid systems and chemical reactor systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant.

<span class="mw-page-title-main">Continuous stirred-tank reactor</span> Type of chemical reactor

The continuous stirred-tank reactor (CSTR), also known as vat- or backmix reactor, mixed flow reactor (MFR), or a continuous-flow stirred-tank reactor (CFSTR), is a common model for a chemical reactor in chemical engineering and environmental engineering. A CSTR often refers to a model used to estimate the key unit operation variables when using a continuous agitated-tank reactor to reach a specified output. The mathematical model works for all fluids: liquids, gases, and slurries.

In physics, a mass balance, also called a material balance, is an application of conservation of mass to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure without this technique. The exact conservation law used in the analysis of the system depends on the context of the problem, but all revolve around mass conservation, i.e., that matter cannot disappear or be created spontaneously.

<span class="mw-page-title-main">Static mixer</span> Device for mixing two fluid materials in a tube containing a series of baffles

A static mixer is a device for the continuous mixing of fluid materials, without moving components. Normally the fluids to be mixed are liquid, but static mixers can also be used to mix gas streams, disperse gas into liquid or blend immiscible liquids. The energy needed for mixing comes from a loss in pressure as fluids flow through the static mixer. One design of static mixer is the plate-type mixer and another common device type consists of mixer elements contained in a cylindrical (tube) or squared housing. Mixer size can vary from about 6 mm to 6 meters diameter. Typical construction materials for static mixer components include stainless steel, polypropylene, Teflon, PVDF, PVC, CPVC and polyacetal. The latest designs involve static mixing elements made of glass-lined steel.

<span class="mw-page-title-main">Plug flow reactor model</span> Reactor simulation model

The plug flow reactor model is a model used to describe chemical reactions in continuous, flowing systems of cylindrical geometry. The PFR model is used to predict the behavior of chemical reactors of such design, so that key reactor variables, such as the dimensions of the reactor, can be estimated.

A batch reactor is a chemical reactor in which a non-continuous reaction is conducted, i.e., one where the reactants, products and solvent do not flow in or out of the vessel during the reaction until the target reaction conversion is achieved. By extension, the expression is somehow inappropriately used for other batch fluid processing operations that do not involve a chemical reaction, such as solids dissolution, product mixing, batch distillation, crystallization, and liquid/liquid extraction. In such cases, however, they may not be referred to as reactors but rather with a term specific to the function they perform.

In flow chemistry, also called reactor engineering, a chemical reaction is run in a continuously flowing stream rather than in batch production. In other words, pumps move fluid into a reactor, and where tubes join one another, the fluids contact one another. If these fluids are reactive, a reaction takes place. Flow chemistry is a well-established technique for use at a large scale when manufacturing large quantities of a given material. However, the term has only been coined recently for its application on a laboratory scale by chemists and describes small pilot plants, and lab-scale continuous plants. Often, microreactors are used.

<span class="mw-page-title-main">Reaction calorimeter</span> Apparatus for measuring reaction energy

A reaction calorimeter is a calorimeter that measures the amount of energy released (exothermic) or absorbed (endothermic) by a chemical reaction.

<span class="mw-page-title-main">Fluidized bed reactor</span> Reactor carrying multiphase chemical reactions with solid particles suspended in an ascending fluid

A fluidized bed reactor (FBR) is a type of reactor device that can be used to carry out a variety of multiphase chemical reactions. In this type of reactor, a fluid is passed through a solid granular material at high enough speeds to suspend the solid and cause it to behave as though it were a fluid. This process, known as fluidization, imparts many important advantages to an FBR. As a result, FBRs are used for many industrial applications.

For both chemical and biological engineering, Semibatch (semiflow) reactors operate much like batch reactors in that they take place in a single stirred tank with similar equipment. However, they are modified to allow reactant addition and/or product removal in time.

In fluid thermodynamics, a heat transfer fluid is a gas or liquid that takes part in heat transfer by serving as an intermediary in cooling on one side of a process, transporting and storing thermal energy, and heating on another side of a process. Heat transfer fluids are used in countless applications and industrial processes requiring heating or cooling, typically in a closed circuit and in continuous cycles. Cooling water, for instance, cools an engine, while heating water in a hydronic heating system heats the radiator in a room.

The circulating fluidized bed (CFB) is a type of Fluidized bed combustion that utilizes a recirculating loop for even greater efficiency of combustion. while achieving lower emission of pollutants. Reports suggest that up to 95% of pollutants can be absorbed before being emitted into the atmosphere. The technology is limited in scale however, due to its extensive use of limestone, and the fact that it produces waste byproducts.

Ebullated bed reactors are a type of fluidized bed reactor that utilizes ebullition, or bubbling, to achieve appropriate distribution of reactants and catalysts. The ebullated-bed technology utilizes a three-phase reactor, and is most applicable for exothermic reactions and for feedstocks which are difficult to process in fixed-bed or plug flow reactors due to high levels of contaminants. Ebullated bed reactors offer high-quality, continuous mixing of liquid and catalyst particles. The advantages of a good back-mixed bed include excellent temperature control and, by reducing bed plugging and channeling, low and constant pressure drops. Therefore, ebullated bed reactors have the characteristics of stirred reactor type operation with a fluidized catalyst.

The residence time of a fluid parcel is the total time that the parcel has spent inside a control volume (e.g.: a chemical reactor, a lake, a human body). The residence time of a set of parcels is quantified in terms of the frequency distribution of the residence time in the set, which is known as residence time distribution (RTD), or in terms of its average, known as mean residence time.

<span class="mw-page-title-main">Oscillatory baffled reactor</span>

A Continuous Oscillatory Baffled Reactor (COBR) is a specially designed chemical reactor to achieve plug flow under laminar flow conditions. Achieving plug flow has previously been limited to either a large number of continuous stir tank reactors (CSTR) in series or conditions with high turbulent flow. The technology incorporates annular baffles to a tubular reactor framework to create eddies when liquid is pushed up through the tube. Likewise, when liquid is on a downstroke through the tube, eddies are created on the other side of the baffles. Eddy generation on both sides of the baffles creates very effective mixing while still maintaining plug flow. By using COBR, potentially higher yields of product can be made with greater control and reduced waste.

References

  1. Gupta, Jharna; Agarwal, Madhu; Dalai, A.K. (August 2020). "An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production". Journal of Industrial and Engineering Chemistry. 88: 58–77. doi:10.1016/j.jiec.2020.05.012. ISSN   1226-086X.
  2. Wiles, Charlotte; Watts, Paul (2012). "Continuous flow reactors: a perspective". Green Chem. 14 (1): 38–54. doi:10.1039/C1GC16022B. ISSN   1463-9262.
  3. Bouhenchir, H.; Cabassud, M.; Le Lann, M.V. (May 2006). "Predictive functional control for the temperature control of a chemical batch reactor". Computers & Chemical Engineering. 30 (6–7): 1141–1154. doi:10.1016/j.compchemeng.2006.02.014. ISSN   0098-1354.