Core model

Last updated

In set theory, the core model is a definable inner model of the universe of all sets. Even though set theorists refer to "the core model", it is not a uniquely identified mathematical object. Rather, it is a class of inner models that under the right set-theoretic assumptions have very special properties, most notably covering properties. Intuitively, the core model is "the largest canonical inner model there is" (Ernest Schimmerling and John R. Steel) and is typically associated with a large cardinal notion. If Φ is a large cardinal notion, then the phrase "core model below Φ" refers to the definable inner model that exhibits the special properties under the assumption that there does not exist a cardinal satisfying Φ. The core model program seeks to analyze large cardinal axioms by determining the core models below them.

Contents

History

The first core model was Kurt Gödel's constructible universe L. Ronald Jensen proved the covering lemma for L in the 1970s under the assumption of the non-existence of zero sharp, establishing that L is the "core model below zero sharp". The work of Solovay isolated another core model L[U], for U an ultrafilter on a measurable cardinal (and its associated "sharp", zero dagger). Together with Tony Dodd, Jensen constructed the Dodd–Jensen core model ("the core model below a measurable cardinal") and proved the covering lemma for it and a generalized covering lemma for L[U].

Mitchell used coherent sequences of measures to develop core models containing multiple or higher-order measurables. Still later, the Steel core model used extenders and iteration trees to construct a core model below a Woodin cardinal.

Construction of core models

Core models are constructed by transfinite recursion from small fragments of the core model called mice. An important ingredient of the construction is the comparison lemma that allows giving a wellordering of the relevant mice.

At the level of strong cardinals and above, one constructs an intermediate countably certified core model Kc, and then, if possible, extracts K from Kc.

Properties of core models

Kc (and hence K) is a fine-structural countably iterable extender model below long extenders. (It is not currently known how to deal with long extenders, which establish that a cardinal is superstrong.) Here countable iterability means ω1+1 iterability for all countable elementary substructures of initial segments, and it suffices to develop basic theory, including certain condensation properties. The theory of such models is canonical and well understood. They satisfy GCH, the diamond principle for all stationary subsets of regular cardinals, the square principle (except at subcompact cardinals), and other principles holding in L.

Kc is maximal in several senses. Kc computes the successors of measurable and many singular cardinals correctly. Also, it is expected that under an appropriate weakening of countable certifiability, Kc would correctly compute the successors of all weakly compact and singular strong limit cardinals correctly. If V is closed under a mouse operator (an inner model operator), then so is Kc. Kc has no sharp: There is no natural non-trivial elementary embedding of Kc into itself. (However, unlike K, Kc may be elementarily self-embeddable.)

If in addition there are also no Woodin cardinals in this model (except in certain specific cases, it is not known how the core model should be defined if Kc has Woodin cardinals), we can extract the actual core model K. K is also its own core model. K is locally definable and generically absolute: For every generic extension of V, for every cardinal κ>ω1 in V[G], K as constructed in H(κ) of V[G] equals K∩H(κ). (This would not be possible had K contained Woodin cardinals). K is maximal, universal, and fully iterable. This implies that for every iterable extender model M (called a mouse), there is an elementary embedding M→N and of an initial segment of K into N, and if M is universal, the embedding is of K into M.

It is conjectured that if K exists and V is closed under a sharp operator M, then K is Σ11 correct allowing real numbers in K as parameters and M as a predicate. That amounts to Σ13 correctness (in the usual sense) if M is x→x#.

The core model can also be defined above a particular set of ordinals X: X belongs to K(X), but K(X) satisfies the usual properties of K above X. If there is no iterable inner model with ω Woodin cardinals, then for some X, K(X) exists. The above discussion of K and Kc generalizes to K(X) and Kc(X).

Construction of core models

Conjecture:

Partial results for the conjecture are that:

  1. If there is no inner model with a Woodin cardinal, then K exists.
  2. If (boldface) Σ1n determinacy (n is finite) holds in every generic extension of V, but there is no iterable inner model with n Woodin cardinals, then K exists.
  3. If there is a measurable cardinal κ, then either Kc below κ exists, or there is an ω1+1 iterable model with measurable limit λ of both Woodin cardinals and cardinals strong up to λ.

If V has Woodin cardinals but not cardinals strong past a Woodin one, then under appropriate circumstances (a candidate for) K can be constructed by constructing K below each Woodin cardinal (and below the class of all ordinals) κ but above that K as constructed below the supremum of Woodin cardinals below κ. The candidate core model is not fully iterable (iterability fails at Woodin cardinals) or generically absolute, but otherwise behaves like K.

Related Research Articles

In the mathematical discipline of set theory, 0# is the set of true formulae about indiscernibles and order-indiscernibles in the Gödel constructible universe. It is often encoded as a subset of the integers, or as a subset of the hereditarily finite sets, or as a real number. Its existence is unprovable in ZFC, the standard form of axiomatic set theory, but follows from a suitable large cardinal axiom. It was first introduced as a set of formulae in Silver's 1966 thesis, later published as Silver (1971), where it was denoted by Σ, and rediscovered by Solovay, who considered it as a subset of the natural numbers and introduced the notation O#.

In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, and all singletons {α}, ακ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.

In set theory, a strong cardinal is a type of large cardinal. It is a weakening of the notion of a supercompact cardinal.

In set theory, a Woodin cardinal is a cardinal number λ such that for all functions

In mathematics, a cardinal number κ is called huge if there exists an elementary embedding j : VM from V into a transitive inner model M with critical point κ and

In the foundations of mathematics, a covering lemma is used to prove that the non-existence of certain large cardinals leads to the existence of a canonical inner model, called the core model, that is, in a sense, maximal and approximates the structure of the von Neumann universe V. A covering lemma asserts that under some particular anti-large cardinal assumption, the core model exists and is maximal in a sense that depends on the chosen large cardinal. The first such result was proved by Ronald Jensen for the constructible universe assuming 0# does not exist, which is now known as Jensen's covering theorem.

In mathematics, an Erdős cardinal, also called a partition cardinal is a certain kind of large cardinal number introduced by Paul Erdős and András Hajnal (1958).

In mathematics, in set theory, the constructible universe, denoted by L, is a particular class of sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchyLα. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

In mathematics, and particularly in axiomatic set theory, the diamond principle is a combinatorial principle introduced by Ronald Jensen in Jensen (1972) that holds in the constructible universe and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the Axiom of constructibility implies the existence of a Suslin tree.

In mathematics, specifically set theory and model theory, a stationary set is a set that is not too small in the sense that it intersects all club sets, and is analogous to a set of non-zero measure in measure theory. There are at least three closely related notions of stationary set, depending on whether one is looking at subsets of an ordinal, or subsets of something of given cardinality, or a powerset.

In set theory, L(R) is the smallest transitive inner model of ZF containing all the ordinals and all the reals.

Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists.

In set theory, the singular cardinals hypothesis (SCH) arose from the question of whether the least cardinal number for which the generalized continuum hypothesis (GCH) might fail could be a singular cardinal.

In the mathematical field of set theory, the proper forcing axiom (PFA) is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings.

In mathematical logic, a formula is said to be absolute if it has the same truth value in each of some class of structures. Theorems about absoluteness typically establish relationships between the absoluteness of formulas and their syntactic form.

Jack Silver American mathematician

Jack Howard Silver was a set theorist and logician at the University of California, Berkeley.

In the mathematical field of set theory, the Solovay model is a model constructed by Robert M. Solovay (1970) in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue measurable. The construction relies on the existence of an inaccessible cardinal.

This is a glossary of set theory.

References