Inner model

Last updated

In set theory, a branch of mathematical logic, an inner model [1] for a theory T is a substructure of a model M of a set theory that is both a model for T and contains all the ordinals of M.

Contents

Definition

Let L = ⟨∈⟩ be the language of set theory. Let S be a particular set theory, for example the ZFC axioms and let T (possibly the same as S) also be a theory in L.

If M is a model for S, and N is an L-structure such that

  1. N is a substructure of M, i.e. the interpretationN of ∈ in N is ∈M  N2
  2. N is a model of T
  3. the domain of N is a transitive class of M
  4. N contains all ordinals in M

then we say that N is an inner model of T (in M). [2] Usually T will equal (or subsume) S, so that N is a model for S 'inside' the model M of S.

If only conditions 1 and 2 hold, N is called a standard model of T (in M), a standard submodel of T (if S = T and) N is a set in M. A model N of T in M is called transitive when it is standard and condition 3 holds. If the axiom of foundation is not assumed (that is, is not in S) all three of these concepts are given the additional condition that N be well-founded. Hence inner models are transitive, transitive models are standard, and standard models are well-founded.

The assumption that there exists a standard submodel of ZFC (in a given universe) is stronger than the assumption that there exists a model. In fact, if there is a standard submodel, then there is a smallest standard submodel called the minimal model contained in all standard submodels. The minimal submodel contains no standard submodel (as it is minimal) but (assuming the consistency of ZFC) it contains some model of ZFC by the Gödel completeness theorem. This model is necessarily not well-founded otherwise its Mostowski collapse would be a standard submodel. (It is not well-founded as a relation in the universe, though it satisfies the axiom of foundation so is "internally" well-founded. Being well-founded is not an absolute property. [3] ) In particular in the minimal submodel there is a model of ZFC but there is no standard submodel of ZFC.

Use

Usually when one talks about inner models of a theory, the theory one is discussing is ZFC or some extension of ZFC (like ZFC + "a measurable cardinal exists"). When no theory is mentioned, it is usually assumed that the model under discussion is an inner model of ZFC. However, it is not uncommon to talk about inner models of subtheories of ZFC (like ZF or KP) as well.

Kurt Gödel proved that any model of ZF has a least inner model of ZF, the constructible universe, which is also an inner model of ZFC +  GCH.

There is a branch of set theory called inner model theory that studies ways of constructing least inner models of theories extending ZF. Inner model theory has led to the discovery of the exact consistency strength of many important set theoretical properties.

See also

Related Research Articles

In mathematics, the axiom of regularity is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set A contains an element that is disjoint from A. In first-order logic, the axiom reads:

In mathematics, specifically set theory, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states that

there is no set whose cardinality is strictly between that of the integers and the real numbers,

In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal κ is strongly inaccessible if it satisfies the following three conditions: it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and implies .

In mathematics, in set theory, the constructible universe, denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large". The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more".

In set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted by V, is the class of hereditary well-founded sets. This collection, which is formalized by Zermelo–Fraenkel set theory (ZFC), is often used to provide an interpretation or motivation of the axioms of ZFC. The concept is named after John von Neumann, although it was first published by Ernst Zermelo in 1930.

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as V = L. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms. Generalizations of this axiom are explored in inner model theory.

In mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica.

In set theory, L(R) (pronounced L of R) is the smallest transitive inner model of ZF containing all the ordinals and all the reals.

In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that, with respect to any given property, resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory.

In set theory, inner model theory is the study of certain models of ZFC or some fragment or strengthening thereof. Ordinarily these models are transitive subsets or subclasses of the von Neumann universe V, or sometimes of a generic extension of V. Inner model theory studies the relationships of these models to determinacy, large cardinals, and descriptive set theory. Despite the name, it is considered more a branch of set theory than of model theory.

In mathematical logic, a formula is said to be absolute to some class of structures, if it has the same truth value in each of the members of that class. One can also speak of absoluteness of a formula between two structures, if it is absolute to some class which contains both of them.. Theorems about absoluteness typically establish relationships between the absoluteness of formulas and their syntactic form.

In mathematical set theory, a set S is said to be ordinal definable if, informally, it can be defined in terms of a finite number of ordinals by a first-order formula. Ordinal definable sets were introduced by Gödel (1965).

In set theory, a branch of mathematics, the minimal model is the minimal standard model of ZFC. The minimal model was introduced by Shepherdson and rediscovered by Cohen (1963).

In the mathematical field of set theory, the Solovay model is a model constructed by Robert M. Solovay in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue measurable. The construction relies on the existence of an inaccessible cardinal.

This is a glossary of set theory.

References

  1. Shepherdson, J.C. (1951–53). "Inner Models for Set Theory" (Document). Journal of Symbolic Logic.
  2. Jech, Thomas (2002). Set Theory. Berlin: Springer-Verlag. ISBN   3-540-44085-2.
  3. Kunen, Kenneth (1980). Set Theory. Amsterdam: North-Holland Pub. Co. ISBN   0-444-86839-9., Page 117