Cross-correlation matrix

Last updated

The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms.

Definition

For two random vectors and , each containing random elements whose expected value and variance exist, the cross-correlation matrix of and is defined by [1] :p.337

In probability theory, random element is a generalization of the concept of random variable to more complicated spaces than the simple real line. The concept was introduced by Maurice Fréchet (1948) who commented that the “development of probability theory and expansion of area of its applications have led to necessity to pass from schemes where (random) outcomes of experiments can be described by number or a finite set of numbers, to schemes where outcomes of experiments represent, for example, vectors, functions, processes, fields, series, transformations, and also sets or collections of sets.”

In probability theory, the expected value of a random variable, intuitively, is the long-run average value of repetitions of the same experiment it represents. For example, the expected value in rolling a six-sided die is 3.5, because the average of all the numbers that come up is 3.5 as the number of rolls approaches infinity. In other words, the law of large numbers states that the arithmetic mean of the values almost surely converges to the expected value as the number of repetitions approaches infinity. The expected value is also known as the expectation, mathematical expectation, EV, average, mean value, mean, or first moment.

Variance Statistical measure

In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its mean. Informally, it measures how far a set of (random) numbers are spread out from their average value. Variance has a central role in statistics, where some ideas that use it include descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo sampling. Variance is an important tool in the sciences, where statistical analysis of data is common. The variance is the square of the standard deviation, the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , or .

and has dimensions . Written component-wise:

The random vectors and need not have the same dimension, and either might be a scalar value.

Example

For example, if and are random vectors, then is a matrix whose -th entry is .

Cross-correlation matrix of complex random vectors

If and are complex random vectors, each containing random variables whose expected value and variance exist, the cross-correlation matrix of and is defined by

In probability theory and statistics, a complex random vector is typically a tuple of complex-valued random variables, and generally is a random variable taking values in a vector space over the field of complex numbers. If are complex-valued random variables, then the n-tuple is a complex random vector. Complex random variables can always be considered as pairs of real random vectors: their real and imaginary parts.

where denotes Hermitian transposition.

Uncorrelatedness

Two random vectors and are called uncorrelated if

They are uncorrelated if and only if their cross-covariance matrix matrix is zero.

In the case of two complex random vectors and they are called uncorrelated if

and

Properties

Relation to the cross-covariance matrix

The cross-correlation is related to the cross-covariance matrix as follows:

Respectively for complex random vectors:

See also

Autocorrelation

Autocorrelation, also known as serial correlation, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal implied by its harmonic frequencies. It is often used in signal processing for analyzing functions or series of values, such as time domain signals.

In statistics, many statistical tests calculate correlations between variables and when two variables are found to be correlated, it is tempting to assume that this shows that one variable causes the other. That "correlation proves causation" is considered a questionable cause logical fallacy when two events occurring together are taken to have established a cause-and-effect relationship. This fallacy is also known as cum hoc ergo propter hoc, Latin for "with this, therefore because of this", and "false cause". A similar fallacy, that an event that followed another was necessarily a consequence of the first event, is the post hoc ergo propter hoc fallacy.

In probability theory and statistics, covariance is a measure of how much two variables change together, and the covariance function, or kernel, describes the spatial or temporal covariance of a random variable process or field. For a random field or stochastic process Z(x) on a domain D, a covariance function C(xy) gives the covariance of the values of the random field at the two locations x and y:

Related Research Articles

In probability, and statistics, a multivariate random variable or random vector is a list of mathematical variables each of whose value is unknown, either because the value has not yet occurred or because there is imperfect knowledge of its value. The individual variables in a random vector are grouped together because they are all part of a single mathematical system — often they represent different properties of an individual statistical unit. For example, while a given person has a specific age, height and weight, the representation of these features of an unspecified person from within a group would be a random vector. Normally each element of a random vector is a real number.

Multivariate normal distribution

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which clusters around a mean value.

Principal component analysis conversion of a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. If there are observations with variables, then the number of distinct principal components is . This transformation is defined in such a way that the first principal component has the largest possible variance, and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components. The resulting vectors are an uncorrelated orthogonal basis set. PCA is sensitive to the relative scaling of the original variables.

In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:

In probability theory and statistics, two real-valued random variables, , , are said to be uncorrelated if their covariance, , is zero. If two variables are uncorrelated, there is no linear relationship between them.

Covariance matrix measure of covariance of components of a random vector

In probability theory and statistics, a covariance matrix, also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix, is a matrix whose element in the i, j position is the covariance between the i-th and j-th elements of a random vector. A random vector is a random variable with multiple dimensions. Each element of the vector is a scalar random variable. Each element has either a finite number of observed empirical values or a finite or infinite number of potential values. The potential values are specified by a theoretical joint probability distribution.

Pearson correlation coefficient

In statistics, the Pearson correlation coefficient, also referred to as Pearson's r, the Pearson product-moment correlation coefficient (PPMCC) or the bivariate correlation, is a measure of the linear correlation between two variables X and Y. According to the Cauchy–Schwarz inequality it has a value between +1 and −1, where 1 is total positive linear correlation, 0 is no linear correlation, and −1 is total negative linear correlation. It is widely used in the sciences. It was developed by Karl Pearson from a related idea introduced by Francis Galton in the 1880s and for which the mathematical formula was derived and published by Auguste Bravais in 1844.. The naming of the coefficient is thus an example of Stigler's Law.

In mathematics, more specifically in multivariable calculus, the implicit function theorem is a tool that allows relations to be converted to functions of several real variables. It does so by representing the relation as the graph of a function. There may not be a single function whose graph can represent the entire relation, but there may be such a function on a restriction of the domain of the relation. The implicit function theorem gives a sufficient condition to ensure that there is such a function.

Independent component analysis in signal processing, a computational method

In signal processing, independent component analysis (ICA) is a computational method for separating a multivariate signal into additive subcomponents. This is done by assuming that the subcomponents are non-Gaussian signals and that they are statistically independent from each other. ICA is a special case of blind source separation. A common example application is the "cocktail party problem" of listening in on one person's speech in a noisy room.

Cross-correlation measure of similarity of two series as a function of the displacement of one relative to the other

In signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal for a shorter, known feature. It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology.

In probability and statistics, given two stochastic processes and , the cross-covariance is a function that gives the covariance of one process with the other at pairs of time points. With the usual notation ; for the expectation operator, if the processes have the mean functions and , then the cross-covariance is given by

Weighted least squares (WLS), also known as weighted linear regression, is a generalization of ordinary least squares and linear regression in which the errors covariance matrix is allowed to be different to an identity matrix. WLS is also a specialization of generalized least squares in which the above matrix is diagonal.

A whitening transformation or sphering transformation is a linear transformation that transforms a vector of random variables with a known covariance matrix into a set of new variables whose covariance is the identity matrix, meaning that they are uncorrelated and each have variance 1. The transformation is called "whitening" because it changes the input vector into a white noise vector.

The sample mean or empirical mean and the sample covariance are statistics computed from a collection of data on one or more random variables. The sample mean and sample covariance are estimators of the population mean and population covariance, where the term population refers to the set from which the sample was taken.

In probability theory and statistics, a cross-covariance matrix is a matrix whose element in the i, j position is the covariance between the i-th element of a random vector and j-th element of another random vector. A random vector is a random variable with multiple dimensions. Each element of the vector is a scalar random variable. Each element has either a finite number of observed empirical values or a finite or infinite number of potential values. The potential values are specified by a theoretical joint probability distribution. Intuitively, the cross-covariance matrix generalizes the notion of covariance to multiple dimensions.

In probability theory, the family of complex normal distributions characterizes complex random variables whose real and imaginary parts are jointly normal. The complex normal family has three parameters: location parameter μ, covariance matrix , and the relation matrix . The standard complex normal is the univariate distribution with , , and .

The auto-correlation matrix of a random vector is an matrix containing as elements the autocorrelations of all pairs of elements of the random vector . The autocorrelation matrix is used in various digital signal processing algorithms.

References

  1. Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press. ISBN   978-0-521-86470-1.

Further reading