Radial distribution function

Last updated

calculation of
g
(
r
)
{\displaystyle g(r)} Rdf schematic.svg
calculation of
Radial distribution function for the Lennard-Jones model fluid at
T
*
=
0.71
,
n
*
=
0.844
{\displaystyle \scriptstyle T^{*}=0.71,\;n^{*}=0.844}
. Lennard-Jones Radial Distribution Function.svg
Radial distribution function for the Lennard-Jones model fluid at .

In statistical mechanics, the radial distribution function, (or pair correlation function) in a system of particles (atoms, molecules, colloids, etc.), describes how density varies as a function of distance from a reference particle.

Contents

If a given particle is taken to be at the origin O, and if is the average number density of particles, then the local time-averaged density at a distance from O is . This simplified definition holds for a homogeneous and isotropic system. A more general case will be considered below.

In simplest terms it is a measure of the probability of finding a particle at a distance of away from a given reference particle, relative to that for an ideal gas. The general algorithm involves determining how many particles are within a distance of and away from a particle. This general theme is depicted to the right, where the red particle is our reference particle, and blue particles are those whose centers are within the circular shell, dotted in orange.

The radial distribution function is usually determined by calculating the distance between all particle pairs and binning them into a histogram. The histogram is then normalized with respect to an ideal gas, where particle histograms are completely uncorrelated. For three dimensions, this normalization is the number density of the system multiplied by the volume of the spherical shell, which symbolically can be expressed as .

Given a potential energy function, the radial distribution function can be computed either via computer simulation methods like the Monte Carlo method, or via the Ornstein–Zernike equation, using approximative closure relations like the Percus–Yevick approximation or the Hypernetted Chain Theory. It can also be determined experimentally, by radiation scattering techniques or by direct visualization for large enough (micrometer-sized) particles via traditional or confocal microscopy.

The radial distribution function is of fundamental importance since it can be used, using the Kirkwood–Buff solution theory, to link the microscopic details to macroscopic properties. Moreover, by the reversion of the Kirkwood-Buff theory, it is possible to attain the microscopic details of the radial distribution function from the macroscopic properties. The radial distribution function may also be inverted to predict the potential energy function using the Ornstein-Zernike equation or structure-optimized potential refinement. [1]

Definition

Consider a system of particles in a volume (for an average number density ) and at a temperature (let us also define ; is Boltzmann’s constant). The particle coordinates are , with . The potential energy due to the interaction between particles is and we do not consider the case of an externally applied field.

The appropriate averages are taken in the canonical ensemble , with the configurational integral, taken over all possible combinations of particle positions. The probability of an elementary configuration, namely finding particle 1 in , particle 2 in , etc. is given by

.

 

 

 

 

(1)

The total number of particles is huge, so that in itself is not very useful. However, one can also obtain the probability of a reduced configuration, where the positions of only particles are fixed, in , with no constraints on the remaining particles. To this end, one has to integrate ( 1 ) over the remaining coordinates :

.

If the particles are non-interacting, in the sense that the potential energy of each particle does not depend on any of the other particles, , then the partition function factorizes, and the probability of an elementary configuration decomposes with independent arguments to a product of single particle probabilities,

Note how for non-interacting particles the probability is symmetric in its arguments. This is not true in general, and the order in which the positions occupy the argument slots of matters. Given a set of positions, the way that the particles can occupy those positions is The probability that those positions ARE occupied is found by summing over all configurations in which a particle is at each of those locations. This can be done by taking every permutation, , in the symmetric group on objects, , to write . For fewer positions, we integrate over extraneous arguments, and include a correction factor to prevent overcounting,

This quantity is called the n-particle density function. For indistinguishable particles, one could permute all the particle positions, , without changing the probability of an elementary configuration, , so that the n-particle density function reduces to

Integrating the n-particle density gives the permutation factor , counting the number of ways one can sequentially pick particles to place at the positions out of the total particles. Now let's turn to how we interpret this functions for different values of .

For , we have the one-particle density. For a crystal it is a periodic function with sharp maxima at the lattice sites. For a non-interacting gas, it is independent of the position and equal to the overall number density, , of the system. To see this first note that in the volume occupied by the gas, and 0 everywhere else. The partition function in this case is

from which the definition gives the desired result

In fact, for this special case every n-particle density is independent of coordinates, and can be computed explicitly

For , the non-interacting n-particle density is approximately . [2] With this in hand, the n-point correlation function is defined by factoring out the non-interacting contribution[ citation needed ],

Explicitly, this definition reads

where it is clear that the n-point correlation function is dimensionless.

Relations involving g(r)

The structure factor

The second-order correlation function is of special importance, as it is directly related (via a Fourier transform) to the structure factor of the system and can thus be determined experimentally using X-ray diffraction or neutron diffraction. [3]

If the system consists of spherically symmetric particles, depends only on the relative distance between them, . We will drop the sub- and superscript: . Taking particle 0 as fixed at the origin of the coordinates, is the average number of particles (among the remaining ) to be found in the volume around the position .

We can formally count these particles and take the average via the expression , with the ensemble average, yielding:

 

 

 

 

(5)

where the second equality requires the equivalence of particles . The formula above is useful for relating to the static structure factor , defined by , since we have:

and thus:

, proving the Fourier relation alluded to above.

This equation is only valid in the sense of distributions, since is not normalized: , so that diverges as the volume , leading to a Dirac peak at the origin for the structure factor. Since this contribution is inaccessible experimentally we can subtract it from the equation above and redefine the structure factor as a regular function:

.

Finally, we rename and, if the system is a liquid, we can invoke its isotropy:

.

 

 

 

 

(6)

The compressibility equation

Evaluating ( 6 ) in and using the relation between the isothermal compressibility and the structure factor at the origin yields the compressibility equation:

.

 

 

 

 

(7)

The potential of mean force

It can be shown [4] that the radial distribution function is related to the two-particle potential of mean force by:

.

 

 

 

 

(8)

In the dilute limit, the potential of mean force is the exact pair potential under which the equilibrium point configuration has a given .

The energy equation

If the particles interact via identical pairwise potentials: , the average internal energy per particle is: [5] :Section 2.5

.

 

 

 

 

(9)

The pressure equation of state

Developing the virial equation yields the pressure equation of state:

.

 

 

 

 

(10)

Thermodynamic properties in 3D

The radial distribution function is an important measure because several key thermodynamic properties, such as potential energy and pressure can be calculated from it.

For a 3-D system where particles interact via pairwise potentials, the potential energy of the system can be calculated as follows: [6]

Where N is the number of particles in the system, is the number density, is the pair potential.

The pressure of the system can also be calculated by relating the 2nd virial coefficient to . The pressure can be calculated as follows: [6]

.

Note that the results of potential energy and pressure will not be as accurate as directly calculating these properties because of the averaging involved with the calculation of .

Approximations

For dilute systems (e.g. gases), the correlations in the positions of the particles that accounts for are only due to the potential engendered by the reference particle, neglecting indirect effects. In the first approximation, it is thus simply given by the Boltzmann distribution law:

.

 

 

 

 

(11)

If were zero for all i.e., if the particles did not exert any influence on each other, then for all and the mean local density would be equal to the mean density : the presence of a particle at O would not influence the particle distribution around it and the gas would be ideal. For distances such that is significant, the mean local density will differ from the mean density , depending on the sign of (higher for negative interaction energy and lower for positive ).

As the density of the gas increases, the low-density limit becomes less and less accurate since a particle situated in experiences not only the interaction with the particle in O but also with the other neighbours, themselves influenced by the reference particle. This mediated interaction increases with the density, since there are more neighbours to interact with: it makes physical sense to write a density expansion of , which resembles the virial equation:

.

 

 

 

 

(12)

This similarity is not accidental; indeed, substituting ( 12 ) in the relations above for the thermodynamic parameters (Equations 7 , 9 and 10 ) yields the corresponding virial expansions. [7] The auxiliary function is known as the cavity distribution function. [5] :Table 4.1 It has been shown that for classical fluids at a fixed density and a fixed positive temperature, the effective pair potential that generates a given under equilibrium is unique up to an additive constant, if it exists. [8]

In recent years, some attention has been given to develop pair correlation functions for spatially-discrete data such as lattices or networks. [9]

Experimental

One can determine indirectly (via its relation with the structure factor ) using neutron scattering or x-ray scattering data. The technique can be used at very short length scales (down to the atomic level [10] ) but involves significant space and time averaging (over the sample size and the acquisition time, respectively). In this way, the radial distribution function has been determined for a wide variety of systems, ranging from liquid metals [11] to charged colloids. [12] Going from the experimental to is not straightforward and the analysis can be quite involved. [13]

It is also possible to calculate directly by extracting particle positions from traditional or confocal microscopy. [14] This technique is limited to particles large enough for optical detection (in the micrometer range), but it has the advantage of being time-resolved so that, aside from the statical information, it also gives access to dynamical parameters (e.g. diffusion constants [15] ) and also space-resolved (to the level of the individual particle), allowing it to reveal the morphology and dynamics of local structures in colloidal crystals, [16] glasses, [17] [18] gels, [19] [20] and hydrodynamic interactions. [21]

Direct visualization of a full (distance-dependent and angle-dependent) pair correlation function was achieved by a scanning tunneling microscopy in the case of 2D molecular gases. [22]

Higher-order correlation functions

It has been noted that radial distribution functions alone are insufficient to characterize structural information. Distinct point processes may possess identical or practically indistinguishable radial distribution functions, known as the degeneracy problem. [23] [24] In such cases, higher order correlation functions are needed to further describe the structure.

Higher-order distribution functions with were less studied, since they are generally less important for the thermodynamics of the system; at the same time, they are not accessible by conventional scattering techniques. They can however be measured by coherent X-ray scattering and are interesting insofar as they can reveal local symmetries in disordered systems. [25]

See also

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

<span class="mw-page-title-main">Electric field</span> Physical field surrounding an electric charge

An electric field is the physical field that surrounds electrically charged particles. Charged particles exert attractive forces on each other when their charges are opposite, and repulse each other when their charges are the same. Because these forces are exerted mutually, two charges must be present for the forces to take place. The electric field of a single charge describes their capacity to exert such forces on another charged object. These forces are described by Coulomb's law, which says that the greater the magnitude of the charges, the greater the force, and the greater the distance between them, the weaker the force. Thus, we may informally say that the greater the charge of an object, the stronger its electric field. Similarly, an electric field is stronger nearer charged objects and weaker further away. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, Electromagnetism is one of the four fundamental interactions of nature.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Gauss's law</span> Foundational law of electromagnetism relating electric field and charge distributions

In physics, Gauss's law, also known as Gauss's flux theorem, is one of Maxwell's equations. It relates the distribution of electric charge to the resulting electric field.

In physics, the screened Poisson equation is a Poisson equation, which arises in the Klein–Gordon equation, electric field screening in plasmas, and nonlocal granular fluidity in granular flow.

Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either or . The density is determined, through definition, by the normalised -electron wavefunction which itself depends upon variables. Conversely, the density determines the wave function modulo up to a phase factor, providing the formal foundation of density functional theory.

<span class="mw-page-title-main">Electrostatics</span> Study of stationary or slow-moving electric charges

Electrostatics is a branch of physics that studies slow-moving or stationary electric charges.

<span class="mw-page-title-main">Stellar dynamics</span>

Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In mathematics, the Hankel transform expresses any given function f(r) as the weighted sum of an infinite number of Bessel functions of the first kind Jν(kr). The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor k along the r axis. The necessary coefficient Fν of each Bessel function in the sum, as a function of the scaling factor k constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval.

<span class="mw-page-title-main">Electric potential energy</span> Potential energy that results from conservative Coulomb forces

Electric potential energy is a potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. An object may be said to have electric potential energy by virtue of either its own electric charge or its relative position to other electrically charged objects.

In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is

<span class="mw-page-title-main">Charge density</span> Electric charge per unit length, area or volume

In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.

Local-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy functional in density functional theory (DFT) that depend solely upon the value of the electronic density at each point in space. Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the homogeneous electron gas (HEG) model. In this regard, LDA is generally synonymous with functionals based on the HEG approximation, which are then applied to realistic systems.

Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions in periodic systems. It was first developed as the method for calculating the electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry. Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity. The short-range contribution is calculated in real space, whereas the long-range contribution is calculated using a Fourier transform. The advantage of this method is the rapid convergence of the energy compared with that of a direct summation. This means that the method has high accuracy and reasonable speed when computing long-range interactions, and it is thus the de facto standard method for calculating long-range interactions in periodic systems. The method requires charge neutrality of the molecular system to accurately calculate the total Coulombic interaction. A study of the truncation errors introduced in the energy and force calculations of disordered point-charge systems is provided by Kolafa and Perram.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.

In 1927, a year after the publication of the Schrödinger equation, Hartree formulated what are now known as the Hartree equations for atoms, using the concept of self-consistency that Lindsay had introduced in his study of many electron systems in the context of Bohr theory. Hartree assumed that the nucleus together with the electrons formed a spherically symmetric field. The charge distribution of each electron was the solution of the Schrödinger equation for an electron in a potential , derived from the field. Self-consistency required that the final field, computed from the solutions, was self-consistent with the initial field, and he thus called his method the self-consistent field method.

<span class="mw-page-title-main">Coulomb's law</span> Fundamental physical law of electromagnetism

Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb. Coulomb's law was essential to the development of the theory of electromagnetism and maybe even its starting point, as it allowed meaningful discussions of the amount of electric charge in a particle.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. Shanks, B.; Potoff, J.; Hoepfner, M. (December 5, 2022). "Transferable Force Fields from Experimental Scattering Data with Machine Learning Assisted Structure Refinement". J. Phys. Chem. Lett. 13 (49): 11512–11520. doi:10.1021/acs.jpclett.2c03163. PMID   36469859. S2CID   254274307.
  2. Tricomi, F.; Erdélyi, A. (March 1, 1951). "The asymptotic expansion of a ratio of gamma functions". Pacific Journal of Mathematics. 1 (1): 133–142. doi: 10.2140/pjm.1951.1.133 .
  3. Dinnebier, R E; Billinge, S J L (March 10, 2008). Powder Diffraction: Theory and Practice (1st ed.). Royal Society of Chemistry. pp.  470–473. doi:10.1039/9781847558237. ISBN   978-1-78262-599-5.
  4. Chandler, D. (1987). "7.3". Introduction to Modern Statistical Mechanics. Oxford University Press.
  5. 1 2 Hansen, J. P. and McDonald, I. R. (2005). Theory of Simple Liquids (3rd ed.). Academic Press.{{cite book}}: CS1 maint: multiple names: authors list (link)
  6. 1 2 Frenkel, Daan; Smit, Berend (2002). Understanding molecular simulation from algorithms to applications (2nd ed.). San Diego: Academic Press. ISBN   978-0122673511.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. Barker, J.; Henderson, D. (1976). "What is "liquid"? Understanding the states of matter". Reviews of Modern Physics. 48 (4): 587. Bibcode:1976RvMP...48..587B. doi:10.1103/RevModPhys.48.587.
  8. Henderson, R. L. (September 9, 1974). "A uniqueness theorem for fluid pair correlation functions". Physics Letters A. 49 (3): 197–198. Bibcode:1974PhLA...49..197H. doi:10.1016/0375-9601(74)90847-0. ISSN   0375-9601.
  9. Gavagnin, Enrico (June 4, 2018). "Pair correlation functions for identifying spatial correlation in discrete domains". Physical Review E. 97 (1): 062104. arXiv: 1804.03452 . Bibcode:2018PhRvE..97f2104G. doi:10.1103/PhysRevE.97.062104. PMID   30011502. S2CID   50780864.
  10. Yarnell, J.; Katz, M.; Wenzel, R.; Koenig, S. (1973). "Structure Factor and Radial Distribution Function for Liquid Argon at 85 K". Physical Review A. 7 (6): 2130. Bibcode:1973PhRvA...7.2130Y. doi:10.1103/PhysRevA.7.2130.
  11. Gingrich, N. S.; Heaton, L. (1961). "Structure of Alkali Metals in the Liquid State". The Journal of Chemical Physics. 34 (3): 873. Bibcode:1961JChPh..34..873G. doi:10.1063/1.1731688.
  12. Sirota, E.; Ou-Yang, H.; Sinha, S.; Chaikin, P.; Axe, J.; Fujii, Y. (1989). "Complete phase diagram of a charged colloidal system: A synchro- tron x-ray scattering study". Physical Review Letters. 62 (13): 1524–1527. Bibcode:1989PhRvL..62.1524S. doi:10.1103/PhysRevLett.62.1524. PMID   10039696.
  13. Pedersen, J. S. (1997). "Analysis of small-angle scattering data from colloids and polymer solutions: Modeling and least-squares fitting". Advances in Colloid and Interface Science. 70: 171–201. doi:10.1016/S0001-8686(97)00312-6.
  14. Crocker, J. C.; Grier, D. G. (1996). "Methods of Digital Video Microscopy for Colloidal Studies". Journal of Colloid and Interface Science. 179 (1): 298–310. Bibcode:1996JCIS..179..298C. doi:10.1006/jcis.1996.0217.
  15. Nakroshis, P.; Amoroso, M.; Legere, J.; Smith, C. (2003). "Measuring Boltzmann's constant using video microscopy of Brownian motion". American Journal of Physics. 71 (6): 568. Bibcode:2003AmJPh..71..568N. doi:10.1119/1.1542619.
  16. Gasser, U.; Weeks, E. R.; Schofield, A.; Pusey, P. N.; Weitz, D. A. (2001). "Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization". Science. 292 (5515): 258–262. Bibcode:2001Sci...292..258G. doi:10.1126/science.1058457. PMID   11303095. S2CID   6590089.
  17. M.I. Ojovan, D.V. Louzguine-Luzgin. Revealing Structural Changes at Glass Transition via Radial Distribution Functions. J. Phys. Chem. B, 124 (15), 3186-3194 (2020) https://doi.org/10.1021/acs.jpcb.0c00214
  18. Weeks, E. R.; Crocker, J. C.; Levitt, A. C.; Schofield, A.; Weitz, D. A. (2000). "Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition". Science. 287 (5453): 627–631. Bibcode:2000Sci...287..627W. doi:10.1126/science.287.5453.627. PMID   10649991.
  19. Cipelletti, L.; Manley, S.; Ball, R. C.; Weitz, D. A. (2000). "Universal Aging Features in the Restructuring of Fractal Colloidal Gels". Physical Review Letters. 84 (10): 2275–2278. Bibcode:2000PhRvL..84.2275C. doi:10.1103/PhysRevLett.84.2275. PMID   11017262.
  20. Varadan, P.; Solomon, M. J. (2003). "Direct Visualization of Long-Range Heterogeneous Structure in Dense Colloidal Gels". Langmuir. 19 (3): 509. doi:10.1021/la026303j.
  21. Gao, C.; Kulkarni, S. D.; Morris, J. F.; Gilchrist, J. F. (2010). "Direct investigation of anisotropic suspension structure in pressure-driven flow". Physical Review E. 81 (4): 041403. Bibcode:2010PhRvE..81d1403G. doi:10.1103/PhysRevE.81.041403. PMID   20481723.
  22. Matvija, Peter; Rozbořil, Filip; Sobotík, Pavel; Ošťádal, Ivan; Kocán, Pavel (2017). "Pair correlation function of a 2D molecular gas directly visualized by scanning tunneling microscopy". The Journal of Physical Chemistry Letters. 8 (17): 4268–4272. doi:10.1021/acs.jpclett.7b01965. PMID   28830146.
  23. Stillinger, Frank H.; Torquato, Salvatore (May 28, 2019). "Structural degeneracy in pair distance distributions". The Journal of Chemical Physics. 150 (20): 204125. Bibcode:2019JChPh.150t4125S. doi: 10.1063/1.5096894 . ISSN   0021-9606. PMID   31153177. S2CID   173995240.
  24. Wang, Haina; Stillinger, Frank H.; Torquato, Salvatore (September 23, 2020). "Sensitivity of pair statistics on pair potentials in many-body systems". The Journal of Chemical Physics. 153 (12): 124106. Bibcode:2020JChPh.153l4106W. doi: 10.1063/5.0021475 . ISSN   0021-9606. PMID   33003740. S2CID   222169131.
  25. Wochner, P.; Gutt, C.; Autenrieth, T.; Demmer, T.; Bugaev, V.; Ortiz, A. D.; Duri, A.; Zontone, F.; Grubel, G.; Dosch, H. (2009). "X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter". Proceedings of the National Academy of Sciences. 106 (28): 11511–4. Bibcode:2009PNAS..10611511W. doi: 10.1073/pnas.0905337106 . PMC   2703671 . PMID   20716512.