Cubic zirconia

Last updated

Cubic zirconia
CZ brilliant.jpg
A round brilliant-cut cubic zirconia
General
Category
Crystal system Cubic
Identification
ColorVarious
Mohs scale hardness8.0–8.5
Specific gravity 5.6–6.0 g/cm3
Refractive index 2.15–2.18

Cubic zirconia (abbreviated CZ) is the cubic crystalline form of zirconium dioxide (ZrO2). The synthesized material is hard and usually colorless, but may be made in a variety of different colors. It should not be confused with zircon, which is a zirconium silicate (ZrSiO4). It is sometimes erroneously called cubic zirconium.

Contents

Because of its low cost, durability, and close visual likeness to diamond, synthetic cubic zirconia has remained the most gemologically and economically important competitor for diamonds since commercial production began in 1976. Its main competitor as a synthetic gemstone is a more recently cultivated material, synthetic moissanite.

Technical aspects

Cubic zirconia is crystallographically isometric, an important attribute of a would-be diamond simulant. During synthesis zirconium oxide naturally forms monoclinic crystals, which are stable form under normal atmospheric conditions. A stabilizer is required for cubic crystals (taking on the fluorite structure) to form, and remain stable at ordinary temperatures; typically this is either yttrium or calcium oxide, the amount of stabilizer used depending on the many recipes of individual manufacturers. Therefore, the physical and optical properties of synthesized CZ vary, all values being ranges.

It is a dense substance, with a density between 5.6 and 6.0 g/cm3—about 1.65 times that of diamond. Cubic zirconia is relatively hard, 8–8.5 on the Mohs scale—slightly harder than most semi-precious natural gems. [1] Its refractive index is high at 2.15–2.18 (compared to 2.42 for diamonds) and its luster is Adamantine lustre. Its dispersion is very high at 0.058–0.066, exceeding that of diamond (0.044). Cubic zirconia has no cleavage and exhibits a conchoidal fracture. Because of its high hardness, it is generally considered brittle.

Under shortwave UV cubic zirconia typically fluoresces a yellow, greenish yellow or "beige". Under longwave UV the effect is greatly diminished, with a whitish glow sometimes being seen. Colored stones may show a strong, complex rare earth absorption spectrum.

History

Discovered in 1892, the yellowish monoclinic mineral baddeleyite is a natural form of zirconium oxide. [2]

The high melting point of zirconia (2750 °C or 4976 °F) hinders controlled growth of single crystals. However, stabilization of cubic zirconium oxide had been realized early on, with the synthetic product stabilized zirconia introduced in 1929. Although cubic, it was in the form of a polycrystalline ceramic: it was used as a refractory material, highly resistant to chemical and thermal attack (up to 2540 °C or 4604 °F). [3]

In 1937, German mineralogists M. V. Stackelberg and K. Chudoba discovered naturally occurring cubic zirconia in the form of microscopic grains included in metamict zircon. This was thought to be a byproduct of the metamictization process, but the two scientists did not think the mineral important enough to give it a formal name. The discovery was confirmed through X-ray diffraction, proving the existence of a natural counterpart to the synthetic product. [4] [5]

As with the majority of grown diamond substitutes, the idea of producing single-crystal cubic zirconia arose in the minds of scientists seeking a new and versatile material for use in lasers and other optical applications. Its production eventually exceeded that of earlier synthetics, such as synthetic strontium titanate, synthetic rutile, YAG (yttrium aluminium garnet) and GGG (gadolinium gallium garnet).

Some of the earliest research into controlled single-crystal growth of cubic zirconia occurred in 1960s France, much work being done by Y. Roulin and R. Collongues. This technique involved molten zirconia being contained within a thin shell of still-solid zirconia, with crystal growth from the melt. The process was named cold crucible, an allusion to the system of water cooling used. Though promising, these attempts yielded only small crystals.

Later, Soviet scientists under V. V. Osiko in the Laser Equipment Laboratory at the Lebedev Physical Institute in Moscow perfected the technique, which was then named skull crucible (an allusion either to the shape of the water-cooled container or to the form of crystals sometimes grown). They named the jewel Fianit after the institute's name FIAN (Physical Institute of the Academy of Science), but the name was not used outside of the USSR.[ citation needed ] This was known at the time as the Institute of Physics at the Russian Academy of Science. [6] Their breakthrough was published in 1973, and commercial production began in 1976. [7] In 1977 cubic zirconia began to be mass-produced in the jewelry marketplace by the Ceres Corporation with crystals stabilized with 94% yttria. Other major producers as of 1993 include Taiwan Crystal Company Ltd, Swarovski and ICT inc. [8] [5] By 1980 annual global production had reached 60 million carats (12 tonnes) and continued to increase with production reaching around 400 tonnes per year in 1998. [8]

Because the natural form of cubic zirconia is so rare, all cubic zirconia used in jewelry has been synthesized, one method of which was patented by Josep F. Wenckus & Co. in 1997. [9] [10] [11]

Synthesis

Worker monitoring melting zirconium oxide and yttrium oxide in an induction-heated "cold crucible" to create cubic zirconia 1000kwCZLpKelley.jpg
Worker monitoring melting zirconium oxide and yttrium oxide in an induction-heated "cold crucible" to create cubic zirconia

The skull-melting method refined by Josep F. Wenckus and coworkers in 1997 remains the industry standard. This is largely due to the process allowing for temperatures of over 3000 degrees to be achieved, lack of contact between crucible and material as well as the freedom to choose any gas atmosphere. Primary downsides to this method include the inability to predict the size of the crystals produced and it is impossible to control the crystallization process through temperature changes. [3] [12]

The apparatus used in this process consists of a cup-shaped crucible surrounded by radio-frequency (RF) activated copper coils and a water-cooling system. [3] [13]

Zirconium dioxide thoroughly mixed with a stabilizer (normally 10% yttrium oxide) is fed into a cold crucible. Metallic chips of either zirconium or the stabilizer are introduced into the powder mix in a compact pile manner. The RF generator is switched on and the metallic chips quickly start heating up and readily oxidize into more zirconia. Consequently, the surrounding powder heats up by thermal conduction and begins melting, which in turn becomes electroconductive and thus it begins to heat up via the RF generator as well. This continues until the entire product is molten. Due to the cooling system surrounding the crucible, a thin shell of sintered solid material is formed. This causes the molten zirconia to remain contained within its own powder which prevents it from contamination from the crucible and reduces heat loss. The melt is left at high temperatures for some hours to ensure homogeneity and ensure all impurities have evaporated. Finally, the entire crucible is slowly removed from the RF coils to reduce the heating and let it slowly cool down (from bottom to top). The rate at which the crucible is removed from the RF coils is chosen as a function of the stability of crystallization dictated by the phase transition diagram. This provokes the crystallization process to begin and useful crystals begin to form. Once the crucible has been completely cooled to room temperature, the resulting crystals are multiple elongated-crystalline blocks. [12] [13]

The reason behind this shape is dictated by a concept known as crystal degeneration according to Tiller. The size and diameter of the obtained crystals is a function of the cross-sectional area of the crucible, volume of the melt and composition of the melt. [3] The diameter of the crystals is heavily influenced by the concentration of Y2O3 stabilizer.

Phase relations in zirconia solids solutions

When observing the phase diagram the cubic phase will crystallize first as the solution is cooled down no matter the concentration of Y2O3. If the concentration of Y2O3 is not high enough the cubic structure will start to break down into the tetragonal state which will then break down into a monoclinic phase. If the concentration of Y2O3 is between 2.5-5% the resulting product will be PSZ (partially stabilized zirconia) while monophasic cubic crystals will form from around 8-40%. Below 14% at low growth rates tend to be opaque indicating partial phase separation in the solid solution (likely due to diffusion in the crystals remaining in the high temperature region for a longer time). Above this threshold crystals tend to remain clear at reasonable growth rates and maintains good annealing conditions. [12]

Doping

Because of cubic zirconia's isomorphic capacity it can be doped with several elements to change the color of the crystal. A list of specific dopants and colors produced by their addition can be seen below.

Dopant [12] [13] SymbolColor(s)
Cerium Ceyellow-orange-red
Chromium Crgreen
Cobalt Colilac-violet-blue
Copper Cuyellow-aqua
Erbium Erpink
Europium Eupink
Iron Feyellow
Holmium HoChampagne
Manganese Mnbrown-violet
Neodymium Ndpurple
Nickel Niyellow-brown
Praseodymium Pramber
Thulium Tmyellow-brown
Titanium Tigolden brown
Vanadium Vgreen
Color Range [12] [13] Dopant Used
yellow-orange-red,
yellow-amber-brown
pink
green-olive
lilac-violet

Primary growth defects

The vast majority of YCZ (yttrium bearing cubic zirconia) crystals are clear with high optical perfection and with gradients of the refractive index lower than . [12] However some samples contain defects with the most characteristic and common ones listed below.

Uses outside jewelry

Due to its optical properties yttrium cubic zirconia (YCZ) has been used for windows, lenses, prisms, filters and laser elements. Particularly in the chemical industry it is used as window material for the monitoring of corrosive liquids due to its chemical stability and mechanical toughness. YCZ has also been used as a substrate for semiconductor and superconductor films in similar industries. [12]

Mechanical properties of partially stabilized zirconia (high hardness and shock resistance, low friction coefficient, high chemical and thermal resistance as well as high wear and tear resistance) allow it to be used as a very particular building material, especially in the bio-engineering industry: It has been used to make reliable super-sharp medical scalpels for doctors that are compatible with bio-tissues and contain an edge much smoother than one made of steel. [12]

Innovations

In recent years[ when? ] manufacturers have sought ways of distinguishing their product by supposedly "improving" cubic zirconia. Coating finished cubic zirconia with a film of diamond-like carbon (DLC) is one such innovation, a process using chemical vapor deposition. The resulting material is purportedly harder, more lustrous and more like diamond overall. The coating is thought to quench the excess fire of cubic zirconia, while improving its refractive index, thus making it appear more like diamond. Additionally, because of the high percentage of diamond bonds in the amorphous diamond coating, the finished simulant will show a positive diamond signature in Raman spectra.

Another technique first applied to quartz and topaz has also been adapted to cubic zirconia: An iridescent effect created by vacuum-sputtering onto finished stones an extremely thin layer of a precious metal (typically gold), or certain metal oxides, metal nitrides, or other coatings. [14] This material is marketed as "mystic" by many dealers. Unlike diamond-like carbon and other hard synthetic ceramic coatings, the iridescent effect made with precious metal coatings is not durable, due to their extremely low hardness and poor abrasion wear properties, compared to the remarkably durable cubic zirconia substrate.

Cubic zirconia vis-à-vis diamond

Key features of cubic zirconia distinguish it from diamond:

One face of an uncut octahedral diamond, showing trigons (of positive and negative relief) formed by natural chemical etching Diamond face trigons scale.jpg
One face of an uncut octahedral diamond, showing trigons (of positive and negative relief) formed by natural chemical etching

Effects on the diamond market

Cubic zirconia, as a diamond simulant and jewel competitor, can potentially reduce demand for conflict diamonds, and impact the controversy surrounding the rarity and value of diamonds. [15] [16]

Regarding value, the paradigm that diamonds are costly due to their rarity and visual beauty has been replaced by an artificial rarity [15] [16] attributed to price-fixing practices of De Beers Company which held a monopoly on the market from the 1870s to early 2000s. [15] [17] The company pleaded guilty to these charges in an Ohio court in 13 July 2004. [17] However, while De Beers has less market power, the price of diamonds continues to increase due to the demand in emerging markets such as India and China. [15] The emergence of artificial stones such as cubic zirconia with optic properties similar to diamonds, could be an alternative for jewelry buyers given their lower price and noncontroversial history.

An issue closely related to monopoly is the emergence of conflict diamonds. The Kimberley Process (KP) was established to deter the illicit trade of diamonds that fund civil wars in Angola and Sierra Leone. [18] However, the KP is not as effective in decreasing the number of conflict diamonds reaching the European and American markets. Its definition does not include forced labor conditions or human right violations. [18] [19] A 2015 study from the Enough Project, showed that groups in the Central African Republic have reaped between US$3 million and US$6 million annually from conflict diamonds. [20] UN reports show that more than US$24 million in conflict diamonds have been smuggled since the establishment of the KP. [21] Diamond simulants have become an alternative to boycott the funding of unethical practices. [20] Terms such as “Eco-friendly Jewelry” define them as conflict free origin and environmentally sustainable. [22] However, concerns from mining countries such as the Democratic Republic of Congo are that a boycott in purchases of diamonds would only worsen their economy. According to the Ministry of Mines in Congo, 10% of its population relies on the income from diamonds. [18] Therefore, cubic zirconia are a short term alternative to reduce conflict but a long term solution would be to establish a more rigorous system of identifying the origin of these stones.

See also

Related Research Articles

<span class="mw-page-title-main">Ceramic</span> An inorganic, nonmetallic solid prepared by the action of heat

A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick.

<span class="mw-page-title-main">Diamond</span> Form of carbon

Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, but diamond is metastable and converts to it at a negligible rate under those conditions. Diamond has the highest hardness and thermal conductivity of any natural material, properties that are used in major industrial applications such as cutting and polishing tools. They are also the reason that diamond anvil cells can subject materials to pressures found deep in the Earth.

<span class="mw-page-title-main">Gemstone</span> Piece of mineral crystal used to make jewelry

A gemstone is a piece of mineral crystal which, when cut or polished, is used to make jewelry or other adornments. Certain rocks and occasionally organic materials that are not minerals may also be used for jewelry and are therefore often considered to be gemstones as well. Most gemstones are hard, but some softer minerals such as brazilianite may be used in jewelry because of their color or luster or other physical properties that have aesthetic value. However, generally speaking, soft minerals are not typically used as gemstones by virtue of their brittleness and lack of durability.

<span class="mw-page-title-main">Zirconium</span> Chemical element, symbol Zr and atomic number 40

Zirconium is a chemical element; it has symbol Zr and atomic number 40. The name zirconium is derived from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian zargun. It is a lustrous, grey-white, strong transition metal that closely resembles hafnium and, to a lesser extent, titanium.

<span class="mw-page-title-main">Rutile</span> Oxide mineral composed of titanium dioxide

Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite.

<span class="mw-page-title-main">Skull crucible</span>

The skull crucible process was developed at the Lebedev Physical Institute in Moscow to manufacture cubic zirconia. It was invented to solve the problem of cubic zirconia's melting-point being too high for even platinum crucibles.

<span class="mw-page-title-main">Zirconium dioxide</span> Chemical compound

Zirconium dioxide, sometimes known as zirconia, is a white crystalline oxide of zirconium. Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant stabilized cubic structured zirconia, cubic zirconia, is synthesized in various colours for use as a gemstone and a diamond simulant.

<span class="mw-page-title-main">Moissanite</span> Silicon carbide mineral

Moissanite is naturally occurring silicon carbide and its various crystalline polymorphs. It has the chemical formula SiC and is a rare mineral, discovered by the French chemist Henri Moissan in 1893. Silicon carbide or moissanite is useful for commercial and industrial applications due to its hardness, optical properties and thermal conductivity.

<span class="mw-page-title-main">Synthetic diamond</span> Diamond created by controlled processes

Lab-grown diamond is diamond that is produced in a controlled technological process. Unlike diamond simulants, synthetic diamonds are composed of the same material as naturally formed diamonds—pure carbon crystallized in an isotropic 3D form—and share identical chemical and physical properties.

<span class="mw-page-title-main">Strontium titanate</span> Chemical compound

Strontium titanate is an oxide of strontium and titanium with the chemical formula SrTiO3. At room temperature, it is a centrosymmetric paraelectric material with a perovskite structure. At low temperatures it approaches a ferroelectric phase transition with a very large dielectric constant ~104 but remains paraelectric down to the lowest temperatures measured as a result of quantum fluctuations, making it a quantum paraelectric. It was long thought to be a wholly artificial material, until 1982 when its natural counterpart—discovered in Siberia and named tausonite—was recognised by the IMA. Tausonite remains an extremely rare mineral in nature, occurring as very tiny crystals. Its most important application has been in its synthesized form wherein it is occasionally encountered as a diamond simulant, in precision optics, in varistors, and in advanced ceramics.

<span class="mw-page-title-main">Material properties of diamond</span>

Diamond is the allotrope of carbon in which the carbon atoms are arranged in the specific type of cubic lattice called diamond cubic. It is a crystal that is transparent to opaque and which is generally isotropic. Diamond is the hardest naturally occurring material known. Yet, due to important structural brittleness, bulk diamond's toughness is only fair to good. The precise tensile strength of bulk diamond is little known; however, compressive strength up to 60 GPa has been observed, and it could be as high as 90–100 GPa in the form of micro/nanometer-sized wires or needles, with a corresponding maximum tensile elastic strain in excess of 9%. The anisotropy of diamond hardness is carefully considered during diamond cutting. Diamond has a high refractive index (2.417) and moderate dispersion (0.044) properties that give cut diamonds their brilliance. Scientists classify diamonds into four main types according to the nature of crystallographic defects present. Trace impurities substitutionally replacing carbon atoms in a diamond's crystal structure, and in some cases structural defects, are responsible for the wide range of colors seen in diamond. Most diamonds are electrical insulators and extremely efficient thermal conductors. Unlike many other minerals, the specific gravity of diamond crystals (3.52) has rather small variation from diamond to diamond.

<span class="mw-page-title-main">Diamond simulant</span> Diamond-like object which is not a diamond

A diamond simulant, diamond imitation or imitation diamond is an object or material with gemological characteristics similar to those of a diamond. Simulants are distinct from synthetic diamonds, which are actual diamonds exhibiting the same material properties as natural diamonds. Enhanced diamonds are also excluded from this definition. A diamond simulant may be artificial, natural, or in some cases a combination thereof. While their material properties depart markedly from those of diamond, simulants have certain desired characteristics—such as dispersion and hardness—which lend themselves to imitation. Trained gemologists with appropriate equipment are able to distinguish natural and synthetic diamonds from all diamond simulants, primarily by visual inspection.

<span class="mw-page-title-main">Yttrium aluminium garnet</span> Synthetic crystalline material of the garnet group

Yttrium aluminium garnet (YAG, Y3Al5O12) is a synthetic crystalline material of the garnet group. It is a cubic yttrium aluminium oxide phase, with other examples being YAlO3 (YAP) in a hexagonal or an orthorhombic, perovskite-like form, and the monoclinic Y4Al2O9 (YAM).

<span class="mw-page-title-main">Yttrium(III) oxide</span> Chemical compound

Yttrium oxide, also known as yttria, is Y2O3. It is an air-stable, white solid substance.

<span class="mw-page-title-main">Zirconium carbide</span> Chemical compound

Zirconium carbide (ZrC) is an extremely hard refractory ceramic material, commercially used in tool bits for cutting tools. It is usually processed by sintering.

<span class="mw-page-title-main">Ceramic knife</span> Knife with a blade made out of non-metallic material

A ceramic knife is a knife with a ceramic blade typically made from zirconium dioxide (ZrO2; also known as zirconia), rather than the steel used for most knives. Ceramic knife blades are usually produced through the dry-pressing and firing of powdered zirconia using solid-state sintering. The blades typically score 8.5 on the Mohs scale of mineral hardness, compared to 4.5 for normal steel and 7.5 to 8 for hardened steel and 10 for diamond. The resultant blade has a hard edge that stays sharp for much longer than conventional steel blades. However, the blade is brittle, subject to chipping, and will break rather than flex if twisted. The ceramic blade is sharpened by grinding the edges with a diamond-dust-coated grinding wheel.

<span class="mw-page-title-main">Yttria-stabilized zirconia</span> Ceramic with room temperature stable cubic crystal structure

Yttria-stabilized zirconia (YSZ) is a ceramic in which the cubic crystal structure of zirconium dioxide is made stable at room temperature by an addition of yttrium oxide. These oxides are commonly called "zirconia" (ZrO2) and "yttria" (Y2O3), hence the name.

Gadolinium Gallium Garnet is a synthetic crystalline material of the garnet group, with good mechanical, thermal, and optical properties. It is typically colorless. It has a cubic lattice, a density of 7.08 g/cm3 and its Mohs hardness is variously noted as 6.5 and 7.5. Its crystals are produced with the Czochralski method. During production, various dopants can be added for colour modification. The material is also used in fabrication of various optical components and as a substrate material for magneto–optical films. It also finds use in jewelry as a diamond simulant. GGG can also be used as a seed substrate for the growth of other garnets such as yttrium iron garnet.

<span class="mw-page-title-main">Shelby Gem Factory</span> American artificial gemstone manufacturer

The Shelby Gem Factory was the production facility of ICT Incorporated, a company in Shelby, Michigan, United States, that manufactured artificial gemstones through proprietary processes. ICT began operations in 1970 and closed in December 2019.

<span class="mw-page-title-main">Ceria-zirconia</span>

Ceria-zirconia is a solid solution of cerium(IV) oxide (CeO2, also known as ceria) and zirconium oxide (ZrO2, also known as zirconia).

References

  1. 1 2 "Mohs' Hardness of Abrasives". Archived from the original on 17 October 2009. Retrieved 6 June 2009.
  2. Bayanova, T.B. (2006). "Baddeleyite: A promising geochronometer for alkaline and basic magmatism". Petrology. 14 (2): 187–200. doi:10.1134/S0869591106020032. S2CID   129079168.
  3. 1 2 3 4 Dhanaraj, Govindhan; Byrappa, Kullaiah; Prasad, Vishwanath (2010). Springer Handbook of Crystal Growth. Springer. pp. 443–. ISBN   978-3-540-74761-1 . Retrieved 1 February 2013.
  4. Stackelberg, M. von; Chudoba, K. (1937). "Dichte und Struktur des Zirkons; II". Zeitschrift für Kristallographie. 97 (1–6): 252–262. doi:10.1524/zkri.1937.97.1.252. S2CID   202046689.
  5. 1 2 "Understanding more about Cubic Zirconia". Chic Jewelry. 2013. Archived from the original on 14 December 2013. Retrieved 6 December 2013.
  6. "Cubic Zirconia". RusGems. Archived from the original on 28 April 2021. Retrieved 3 April 2021.
  7. Hesse, Rayner W. (2007). Jewelrymaking Through History: An Encyclopedia. Greenwood Publishing Group. p. 72. ISBN   978-0-313-33507-5.
  8. 1 2 Fletcher, Andrew, ed. (1993). "7.7 Glass and Gemstones". Zirconia. Vol. 1 (3 ed.). Mitchell Market Reports. pp. 31–93 via ScienceDirect.
  9. https://patentimages.storage.googleapis.com/ec/83/fa/99b2e5aab72f38/US4488821.pdf
  10. Ciuraru, Ioana (2 February 2022). "Cubic Zirconia VS Zircon - 6 Ways To Tell Them Apart".
  11. "zirconi Archives | gioiellis.com". gioiellis.com. 25 April 2024.
  12. 1 2 3 4 5 6 7 8 9 Lomonova, E. E.; Osiko, V. V. (2004). Growth of Zirconia Crystals by Skull-Melting Technique. Chichester, West Sussex: J. Wiley. pp. 461–484.
  13. 1 2 3 4 5 6 7 Nassau, Kurt (Spring 1981). "Cubic zirconia: An Update" (PDF). Gems & Gemology. 1: 9–19. doi:10.5741/GEMS.17.1.9.
  14. "Designer enhanced gemstones". Azotic Coating Technology, Inc. 2010. Retrieved 3 November 2010.
  15. 1 2 3 4 Dhar, Robin (19 March 2013). "Diamonds Are Bullshit". Priceonomics. Archived from the original on 11 April 2018. Retrieved 10 May 2018.
  16. 1 2 Muller, Richard (3 July 2017). "Why Smart People Buy Cubic Zirconia Engagement Rings". Forbes.
  17. 1 2 Johannesburg; Windhoek (15 July 2004). "The Diamond Cartel". The Economist.
  18. 1 2 3 Baker, Aryn. "Blood Diamonds". Time.
  19. K., Greg (2 December 2014). "A Simple Way To Stop Blood Diamonds". Brilliant Earth.
  20. 1 2 "Why the illicit diamond trade is (almost) gone, but not yet forgotten". SCMP. 21 February 2017.
  21. Flynn, Daniel (5 November 2014). "Gold, diamonds fuelling conflict in Central African Republic: U.N. panel". Reuters.
  22. Hoffower, Hillary (21 April 2018). "15 Moissanite Engagement Rings for the Eco-Friendly Bride". Brides.

Further reading