DCP2

Last updated
DCP2
Identifiers
Aliases DCP2 , NUDT20, decapping mRNA 2
External IDs OMIM: 609844 MGI: 1917890 HomoloGene: 13968 GeneCards: DCP2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001242377
NM_152624

NM_027490

RefSeq (protein)

NP_001229306
NP_689837

NP_081766

Location (UCSC) Chr 5: 112.98 – 113.02 Mb Chr 18: 44.51 – 44.56 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

mRNA-decapping enzyme 2 is a protein that in humans is encoded by the DCP2 gene. [5] [6] [7]

Contents

DCP2 is a key component of an mRNA-decapping complex required for removal of the 5-prime cap from mRNA prior to its degradation from the 5-prime end (Fenger-Gron et al., 2005).[supplied by OMIM] [7]

Interactions

DCP2 has been shown to interact with DCP1A [8] and UPF1. [6] [9]

Related Research Articles

<span class="mw-page-title-main">Messenger RNA</span> RNA that is read by the ribosome to produce a protein

In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein.

In cellular biology, P-bodies, or processing bodies, are distinct foci formed by phase separation within the cytoplasm of a eukaryotic cell consisting of many enzymes involved in mRNA turnover. P-bodies are highly conserved structures and have been observed in somatic cells originating from vertebrates and invertebrates, plants and yeast. To date, P-bodies have been demonstrated to play fundamental roles in general mRNA decay, nonsense-mediated mRNA decay, adenylate-uridylate-rich element mediated mRNA decay, and microRNA (miRNA) induced mRNA silencing. Not all mRNAs which enter P-bodies are degraded, as it has been demonstrated that some mRNAs can exit P-bodies and re-initiate translation. Purification and sequencing of the mRNA from purified processing bodies showed that these mRNAs are largely translationally repressed upstream of translation initiation and are protected from 5' mRNA decay.

<span class="mw-page-title-main">Exosome complex</span> Protein complex that degrades RNA

The exosome complex is a multi-protein intracellular complex capable of degrading various types of RNA molecules. Exosome complexes are found in both eukaryotic cells and archaea, while in bacteria a simpler complex called the degradosome carries out similar functions.

<span class="mw-page-title-main">Pyruvate dehydrogenase phosphatase</span> Protein-coding gene in the species Homo sapiens

Pyruvate dehydrogenase phosphatase catalytic subunit 1, also known as protein phosphatase 2C, is an enzyme that in humans is encoded by the PDP1 gene. PDPC 1 is an enzyme which serves to reverse the effects of pyruvate dehydrogenase kinase upon pyruvate dehydrogenase, activating pyruvate dehydrogenase.

<span class="mw-page-title-main">Cap binding complex</span> Formation on 5 ends of mRNAs

The 5' cap of eukaryotic messenger RNA is bound at all times by various cap-binding complexes (CBCs).

<span class="mw-page-title-main">XRN1 (gene)</span>

5′-3′ exoribonuclease 1 (Xrn1) is a protein that in humans is encoded by the XRN1 gene. Xrn1 hydrolyses RNA in the 5′ to 3′ direction.

<span class="mw-page-title-main">UPF1</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 1 is a protein that in humans is encoded by the UPF1 gene.

<span class="mw-page-title-main">Poly(A)-specific ribonuclease</span> Protein-coding gene in the species Homo sapiens

Poly(A)-specific ribonuclease (PARN), also known as polyadenylate-specific ribonuclease or deadenylating nuclease (DAN), is an enzyme that in humans is encoded by the PARN gene.

<span class="mw-page-title-main">UPF2</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 2 is a protein that in humans is encoded by the UPF2 gene.

<span class="mw-page-title-main">UPF3B</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 3B is a protein that in humans is encoded by the UPF3B gene.

<span class="mw-page-title-main">SMG1</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase SMG1 is an enzyme that in humans is encoded by the SMG1 gene. SMG1 belongs to the phosphatidylinositol 3-kinase-related kinase protein family.

<span class="mw-page-title-main">Exosome component 10</span> Protein-coding gene in the species Homo sapiens

Exosome component 10, also known as EXOSC10, is a human gene, the protein product of which is part of the exosome complex and is an autoantigen is patients with certain auto immune diseases, most notably scleromyositis.

<span class="mw-page-title-main">Exosome component 4</span> Protein-coding gene in the species Homo sapiens

Exosome component 4, also known as EXOSC4, is a human gene, which is part of the exosome complex.

<span class="mw-page-title-main">UPF3A</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 3A is a protein that in humans is encoded by the UPF3A gene.

<span class="mw-page-title-main">DCPS (gene)</span> Protein-coding gene in the species Homo sapiens

Scavenger mRNA-decapping enzyme DcpS is a protein that in humans is encoded by the DCPS gene.

<span class="mw-page-title-main">DCP1A</span> Protein found in humans

mRNA-decapping enzyme 1A is a protein that in humans is encoded by the DCP1A gene.

<span class="mw-page-title-main">DCP1B</span> Protein found in humans

mRNA-decapping enzyme 1B is a protein that in humans is encoded by the DCP1B gene.

<span class="mw-page-title-main">Messenger RNA decapping</span> Removal of the 5 cap structure on mRNA

The process of messenger RNA decapping consists of hydrolysis of the 5' cap structure on the RNA exposing a 5' monophosphate. In eukaryotes, this 5' monophosphate is a substrate for the 5' exonuclease Xrn1 and the mRNA is quickly destroyed. There are many situations which may lead to the removal of the cap, some of which are discussed below.

<span class="mw-page-title-main">Decapping complex</span> Eukaryotic protein complex that removes the 5 cap on mRNA

The mRNA decapping complex is a protein complex in eukaryotic cells responsible for removal of the 5' cap. The active enzyme of the decapping complex is the bilobed Nudix family enzyme Dcp2, which hydrolyzes 5' cap and releases 7mGDP and a 5'-monophosphorylated mRNA. This decapped mRNA is inhibited for translation and will be degraded by exonucleases. The core decapping complex is conserved in eukaryotes. Dcp2 is activated by Decapping Protein 1 (Dcp1) and in higher eukaryotes joined by the scaffold protein VCS. Together with many other accessory proteins, the decapping complex assembles in P-bodies in the cytoplasm.

M7GpppN-mRNA hydrolase (EC 3.6.1.62, DCP2, NUDT16, D10 protein, D9 protein, D10 decapping enzyme, decapping enzyme) is an enzyme with systematic name m7GpppN-mRNA m7GDP phosphohydrolase. This enzyme catalyses the following chemical reaction

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000172795 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024472 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Wang Z, Jiao X, Carr-Schmid A, Kiledjian M (October 2002). "The hDcp2 protein is a mammalian mRNA decapping enzyme". Proceedings of the National Academy of Sciences of the United States of America. 99 (20): 12663–12668. Bibcode:2002PNAS...9912663W. doi: 10.1073/pnas.192445599 . PMC   130517 . PMID   12218187.
  6. 1 2 Lykke-Andersen J (December 2002). "Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay". Molecular and Cellular Biology. 22 (23): 8114–8121. doi:10.1128/MCB.22.23.8114-8121.2002. PMC   134073 . PMID   12417715.
  7. 1 2 "Entrez Gene: DCP2 DCP2 decapping enzyme homolog (S. cerevisiae)".
  8. Lykke-Andersen J (December 2002). "Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay". Molecular and Cellular Biology. 22 (23): 8114–8121. doi:10.1128/MCB.22.23.8114-8121.2002. PMC   134073 . PMID   12417715.
  9. Lejeune F, Li X, Maquat LE (September 2003). "Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities". Molecular Cell. 12 (3): 675–687. doi: 10.1016/S1097-2765(03)00349-6 . PMID   14527413.

Further reading