Dandelin spheres

Last updated
Dandelin spheres are touching the pale yellow plane that intersects the cone. Dandelin spheres.svg
Dandelin spheres are touching the pale yellow plane that intersects the cone.
This construction shows how the focal points of an ellipse can be found using the Dandelin spheres. The angle bisectors between the line representing the plane, and those representing the of the cone lead to the centers of the spheres. Cone, Dandelin circles and ellipse.svg
This construction shows how the focal points of an ellipse can be found using the Dandelin spheres. The angle bisectors between the line representing the plane, and those representing the of the cone lead to the centers of the spheres.

In geometry, the Dandelin spheres are one or two spheres that are tangent both to a plane and to a cone that intersects the plane. The intersection of the cone and the plane is a conic section, and the point at which either sphere touches the plane is a focus of the conic section, so the Dandelin spheres are also sometimes called focal spheres. [1]

Contents

The Dandelin spheres were discovered in 1822. [1] [2] They are named in honor of the French mathematician Germinal Pierre Dandelin, though Adolphe Quetelet is sometimes given partial credit as well. [3] [4] [5]

The Dandelin spheres can be used to give elegant modern proofs of two classical theorems known to Apollonius of Perga. The first theorem is that a closed conic section (i.e. an ellipse) is the locus of points such that the sum of the distances to two fixed points (the foci) is constant. The second theorem is that for any conic section, the distance from a fixed point (the focus) is proportional to the distance from a fixed line (the directrix), the constant of proportionality being called the eccentricity. [6]

A conic section has one Dandelin sphere for each focus. An ellipse has two Dandelin spheres touching the same nappe of the cone, while hyperbola has two Dandelin spheres touching opposite nappes. A parabola has just one Dandelin sphere.

Proof that the intersection curve has constant sum of distances to foci

Consider the illustration, depicting a cone with apex S at the top. A plane e intersects the cone in a curve C (with blue interior). The following proof shall show that the curve C is an ellipse.

The two brown Dandelin spheres, G1 and G2, are placed tangent to both the plane and the cone: G1 above the plane, G2 below. Each sphere touches the cone along a circle (colored white), and .

Denote the point of tangency of the plane with G1 by F1, and similarly for G2 and F2 . Let P be a typical point on the curve C.

To Prove: The sum of distances remains constant as the point P moves along the intersection curve C. (This is one definition of C being an ellipse, with and being its foci.)

This gives a different proof of a theorem of Apollonius of Perga. [6]

If we define an ellipse to mean the locus of points P such that d(F1, P) + d(F2, P) = a constant, then the above argument proves that the intersection curve C is indeed an ellipse. That the intersection of the plane with the cone is symmetric about the perpendicular bisector of the line through F1 and F2 may be counterintuitive, but this argument makes it clear.

Cylinder case Zylinder-dandelin.svg
Cylinder case

Adaptations of this argument work for hyperbolas and parabolas as intersections of a plane with a cone. Another adaptation works for an ellipse realized as the intersection of a plane with a right circular cylinder.

Proof of the focus-directrix property

The directrix of a conic section can be found using Dandelin's construction. Each Dandelin sphere intersects the cone at a circle; let both of these circles define their own planes. The intersections of these two parallel planes with the conic section's plane will be two parallel lines; these lines are the directrices of the conic section. However, a parabola has only one Dandelin sphere, and thus has only one directrix.

Using the Dandelin spheres, it can be proved that any conic section is the locus of points for which the distance from a point (focus) is proportional to the distance from the directrix. [7] Ancient Greek mathematicians such as Pappus of Alexandria were aware of this property, but the Dandelin spheres facilitate the proof. [6]

Neither Dandelin nor Quetelet used the Dandelin spheres to prove the focus-directrix property. The first to do so may have been Pierce Morton in 1829, [8] or perhaps Hugh Hamilton who remarked (in 1758) that a sphere touches the cone at a circle which defines a plane whose intersection with the plane of the conic section is a directrix. [1] [9] [10] [11] The focus-directrix property can be used to prove that astronomical objects move along conic sections around the Sun. [12]

Notes

  1. 1 2 3 Taylor, Charles. An Introduction to the Ancient and Modern Geometry of Conics, page 196 ("focal spheres"), pages 204–205 (history of discovery) (Deighton, Bell and co., 1881).
  2. Dandelin, G. (1822). "Mémoire sur quelques propriétés remarquables de la focale parabolique" [Memoir on some remarkable properties of the parabolic focale [i.e., oblique strophoid]]. Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles (in French). 2: 171–200.
  3. Kendig, Keith. Conics, p. 86 (proof for ellipse) and p. 141 (for hyperbola) (Cambridge University Press, 2005).
  4. Quetelet, Adolphe (1819) "Dissertatio mathematica inauguralis de quibusdam locis geometricis nec non de curva focali" (Inaugural mathematical dissertation on some geometric loci and also focal curves), doctoral thesis (University of Ghent ("Gand"), Belgium). (in Latin)
  5. Godeaux, L. (1928). "Le mathématicien Adolphe Quetelet (1796-1874)". Ciel et Terre (in French). 44: 60–64.
  6. 1 2 3 Heath, Thomas. A History of Greek Mathematics, page 119 (focus-directrix property), page 542 (sum of distances to foci property) (Clarendon Press, 1921).
  7. Brannan, A. et al. Geometry, page 19 (Cambridge University Press, 1999).
  8. Numericana's Biographies: Morton, Pierce
  9. Morton, Pierce. Geometry, Plane, Solid, and Spherical, in Six Books, page 228 (Baldwin and Cradock, 1830).
  10. Morton, Pierce (1830). "On the focus of a conic section". Transactions of the Cambridge Philosophical Society. 3: 185–190.
  11. Hamilton, Hugh (1758). De Sectionibus Conicis. Tractatus Geometricus. In quo, ex Natura ipsius Coni, Sectionum Affectiones facillime deducuntur. Methodo nova [On conic sections. A geometric treatise. In which, from the nature of the cone itself, relations of sections are most easily deduced. By a new method.] (in Latin). London, England: William Johnston. pp. 122–125.Liber (book) II, Propositio (proposition) XXXVII (37).
  12. Hyman, Andrew. "A Simple Cartesian Treatment of Planetary Motion", European Journal of Physics, Vol. 14, page 145 (1993).

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In geometry, two geometric objects are perpendicular if their intersection forms right angles at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.

<span class="mw-page-title-main">Dupin cyclide</span> Geometric inversion of a torus, cylinder or double cone

In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered c. 1802 by Charles Dupin, while he was still a student at the École polytechnique following Gaspard Monge's lectures. The key property of a Dupin cyclide is that it is a channel surface in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

<span class="mw-page-title-main">Cissoid</span> Plane curve constructed from two other curves and a fixed point

In geometry, a cissoid is a plane curve generated from two given curves C1, C2 and a point O. Let L be a variable line passing through O and intersecting C1 at P1 and C2 at P2. Let P be the point on L so that Then the locus of such points P is defined to be the cissoid of the curves C1, C2 relative to O.

<span class="mw-page-title-main">Focus (geometry)</span> Geometric point from which certain types of curves are constructed

In geometry, focuses or foci are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse.

<span class="mw-page-title-main">Eccentricity (mathematics)</span> Characteristic of conic sections

In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.

<span class="mw-page-title-main">Cassini oval</span> Class of quartic plane curves

In geometry, a Cassini oval is a quartic plane curve defined as the locus of points in the plane such that the product of the distances to two fixed points (foci) is constant. This may be contrasted with an ellipse, for which the sum of the distances is constant, rather than the product. Cassini ovals are the special case of polynomial lemniscates when the polynomial used has degree 2.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous, targeting, guidance, and preliminary orbit determination.

<span class="mw-page-title-main">Director circle</span> Circle formed by all 90° crossings of tangents of an ellipse or hyperbola

In geometry, the director circle of an ellipse or hyperbola is a circle consisting of all points where two perpendicular tangent lines to the ellipse or hyperbola cross each other.

<span class="mw-page-title-main">Intersection (geometry)</span> Shape formed from points common to other shapes

In geometry, an intersection is a point, line, or curve common to two or more objects. The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point or does not exist. Other types of geometric intersection include:

In mathematics, a generalized conic is a geometrical object defined by a property which is a generalization of some defining property of the classical conic. For example, in elementary geometry, an ellipse can be defined as the locus of a point which moves in a plane such that the sum of its distances from two fixed points – the foci – in the plane is a constant. The curve obtained when the set of two fixed points is replaced by an arbitrary, but fixed, finite set of points in the plane is called an n–ellipse and can be thought of as a generalized ellipse. Since an ellipse is the equidistant set of two circles, where one circle is inside the other, the equidistant set of two arbitrary sets of points in a plane can be viewed as a generalized conic. In rectangular Cartesian coordinates, the equation y = x2 represents a parabola. The generalized equation y = xr, for r ≠ 0 and r ≠ 1, can be treated as defining a generalized parabola. The idea of generalized conic has found applications in approximation theory and optimization theory.

<span class="mw-page-title-main">Confocal conic sections</span> Conic sections with the same foci

In geometry, two conic sections are called confocal if they have the same foci.

<span class="mw-page-title-main">Focal conics</span> Pairs of conic sections in geometry

In geometry, focal conics are a pair of curves consisting of either

<span class="mw-page-title-main">Dupin's theorem</span>

In differential geometry Dupin's theorem, named after the French mathematician Charles Dupin, is the statement:

<span class="mw-page-title-main">Spherical conic</span> Curve on the sphere analogous to an ellipse or hyperbola

In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of whose great-circle distances to two foci is constant. By taking the antipodal point to one focus, every spherical ellipse is also a spherical hyperbola, and vice versa. As a space curve, a spherical conic is a quartic, though its orthogonal projections in three principal axes are planar conics. Like planar conics, spherical conics also satisfy a "reflection property": the great-circle arcs from the two foci to any point on the conic have the tangent and normal to the conic at that point as their angle bisectors.