David Mount

Last updated
David Mount
David-mount.png
NationalityAmerican
Alma mater Purdue University
Known for Computational Geometry
Scientific career
Fields Computer Science
Institutions University of Maryland, College Park
Doctoral advisor Christoph Hoffmann
Website www.cs.umd.edu/users/mount/

David Mount is a professor at the University of Maryland, College Park department of computer science whose research is in computational geometry.

Contents

Biography

Mount received a B.S. in Computer Science at Purdue University in 1977 and received his Ph.D. in Computer Science at Purdue University in 1983 under the advisement of Christoph Hoffmann.

He began teaching at the University of Maryland in 1984 and is Professor in the department of Computer Science there. [1]

As a teacher, he has won the University of Maryland, College of Computer Mathematical and Physical Sciences Dean's Award for Excellence in Teaching in 2005 and 1997 as well as other teaching awards including the Hong Kong Science and Technology, School of Engineering Award for Teaching Excellence Appreciation in 2001.

Research

Mounts's main area of research is computational geometry, which is the branch of algorithms devoted to solving problems of a geometric nature. This field includes problems from classic geometry, like the closest pair of points problem, as well as more recent applied problems, such as computer representation and modeling of curves and surfaces. In particular, Mount has worked on the k-means clustering problem, nearest neighbor search, and point location problem.

Mount has worked on developing practical algorithms for k-means clustering, a problem known to be NP-hard. The most common algorithm used is Lloyd's algorithm, which is heuristic in nature but performs well in practice. He and others later showed [2] how k-d trees could be used to speed up Lloyd's algorithm. They have implemented this algorithm, along with some additional improvements, in the software library Kmeans.

Mount has worked on the nearest neighbor and approximate nearest neighbor search problems. By allowing the algorithm to return an approximate solution to the nearest neighbor query, a significant speedup in space and time complexity can be obtained. One class of approximate algorithms takes as input the error distance, , and forms a data structure that can be stored efficiently (low space complexity) and that returns the -approximate nearest neighbor quickly (low time complexity). In co-authored work with Arya, Netanyahu, R. Silverman and A. Wu, [3] Mount showed that the approximate nearest neighbor problem could be solved efficiently in spaces of low dimension. The data structure described in that paper formed the basis of the ANN open-source library for approximate nearest neighbor searching. [4] In subsequent work, he investigated the computational complexity of approximate nearest neighbor searching. Together with co-authors Arya and Malamatos, he provided efficient space–time tradeoffs for approximate nearest neighbor searching, [5] based on a data structure called the AVD (or approximate Voronoi diagram).

Mount has also worked on point location, which involves preprocessing a planar polygonal subdivision S of size to determine the cell of a subdivision that a query point is in. [6] The paper gives an time to construct a data structure of space that when asked what cell a query point lies in, takes expected time where is the entropy of the probability distribution of which cells the query points lie in.

In addition to the design and analysis of algorithms in computational geometry, Mount has worked on the implementation of efficient algorithms in software libraries such as:

Most cited works

As of December 8, 2009, here is a list of his most cited works (according to Google Scholar) and their main contributions, listed in decreasing order of citations:

  1. An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions [3] - In this paper they give a n algorithm (where depends on both the number of dimensions and the approximate error ) to find a neighbor that is at most a factor distance from the nearest neighbor.
  2. An Efficient k-Means Clustering Algorithm: Analysis and Implementation [2] - In this paper they provide a simpler and more efficient implementation of Lloyd's algorithm, which is used in k-means clustering. The algorithm is called the filtering algorithm.
  3. The Discrete Geodesic Problem [7] - In this paper they compute the shortest path from a source to a destination constrained to having to travel on the surface of a given (possibly nonconvex) polyhedron. Their algorithm takes time to find the first shortest path to the first destination and the shortest path to any additional destination (from the same source) can be computed in time. Here, is the number of vertices.

Recognition

Mount was named to the 2022 class of ACM Fellows, "for contributions to algorithms and data structures for geometric data analysis and retrieval". [8]

Related Research Articles

<span class="mw-page-title-main">Binary search algorithm</span> Search algorithm finding the position of a target value within a sorted array

In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array.

Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity.

<span class="mw-page-title-main">Bounding sphere</span> Sphere that contains a set of objects

In mathematics, given a non-empty set of objects of finite extension in -dimensional space, for example a set of points, a bounding sphere, enclosing sphere or enclosing ball for that set is an -dimensional solid sphere containing all of these objects.

<span class="mw-page-title-main">Euclidean minimum spanning tree</span> Shortest network connecting points

A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.

<i>k</i>-d tree Multidimensional search tree for points in k dimensional space

In computer science, a k-d tree is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key and creating point clouds. k-d trees are a special case of binary space partitioning trees.

In statistics, the k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. It is used for classification and regression. In both cases, the input consists of the k closest training examples in a data set. The output depends on whether k-NN is used for classification or regression:

Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.

<span class="mw-page-title-main">Closest pair of points problem</span>

The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane was among the first geometric problems that were treated at the origins of the systematic study of the computational complexity of geometric algorithms.

<span class="mw-page-title-main">Range searching</span>

In computer science, the range searching problem consists of processing a set S of objects, in order to determine which objects from S intersect with a query object, called the range. For example, if S is a set of points corresponding to the coordinates of several cities, find the subset of cities within a given range of latitudes and longitudes.

Richard Jay Lipton is an American computer scientist who is Associate Dean of Research, Professor, and the Frederick G. Storey Chair in Computing in the College of Computing at the Georgia Institute of Technology. He has worked in computer science theory, cryptography, and DNA computing.

In computer science, locality-sensitive hashing (LSH) is an algorithmic technique that hashes similar input items into the same "buckets" with high probability. Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search. It differs from conventional hashing techniques in that hash collisions are maximized, not minimized. Alternatively, the technique can be seen as a way to reduce the dimensionality of high-dimensional data; high-dimensional input items can be reduced to low-dimensional versions while preserving relative distances between items.

<span class="mw-page-title-main">DBSCAN</span> Density-based data clustering algorithm

Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996. It is a density-based clustering non-parametric algorithm: given a set of points in some space, it groups together points that are closely packed together, marking as outliers points that lie alone in low-density regions . DBSCAN is one of the most common, and most commonly cited, clustering algorithms.

In mathematics, the Johnson–Lindenstrauss lemma is a result named after William B. Johnson and Joram Lindenstrauss concerning low-distortion embeddings of points from high-dimensional into low-dimensional Euclidean space. The lemma states that a set of points in a high-dimensional space can be embedded into a space of much lower dimension in such a way that distances between the points are nearly preserved. The map used for the embedding is at least Lipschitz, and can even be taken to be an orthogonal projection.

<span class="mw-page-title-main">OPTICS algorithm</span> Algorithm for finding density based clusters in spatial data

Ordering points to identify the clustering structure (OPTICS) is an algorithm for finding density-based clusters in spatial data. It was presented by Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel and Jörg Sander. Its basic idea is similar to DBSCAN, but it addresses one of DBSCAN's major weaknesses: the problem of detecting meaningful clusters in data of varying density. To do so, the points of the database are (linearly) ordered such that spatially closest points become neighbors in the ordering. Additionally, a special distance is stored for each point that represents the density that must be accepted for a cluster so that both points belong to the same cluster. This is represented as a dendrogram.

In computer science and data mining, MinHash is a technique for quickly estimating how similar two sets are. The scheme was invented by Andrei Broder (1997), and initially used in the AltaVista search engine to detect duplicate web pages and eliminate them from search results. It has also been applied in large-scale clustering problems, such as clustering documents by the similarity of their sets of words.

(1+ε)-approximate nearest neighbor search is a variant of the nearest neighbor search problem. A solution to the -approximate nearest neighbor search is a point or multiple points within distance R from a query point, where R is the distance between the query point and its true nearest neighbor.

Nathan S. Netanyahu is an Israeli computer scientist, a professor of computer science at Bar-Ilan University.

In computer science, the cell-probe model is a model of computation similar to the random-access machine, except that all operations are free except memory access. This model is useful for proving lower bounds of algorithms for data structure problems.

In computer science, a retrieval data structure, also known as static function, is a space-efficient dictionary-like data type composed of a collection of pairs that allows the following operations:

Approximate Membership Query Filter (AMQ-Filter) is a group of space-efficient probabilistic data structures that supports approximate membership queries. An approximate membership query answers if an element is in a set or not with a false positive rate of .

References

  1. D. Mount. Curriculum Vitae Archived 2009-11-27 at the Wayback Machine
  2. 1 2 T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman and A. Wu. An Efficient k-Means Clustering Algorithm: Analysis and Implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):881-–892, 2002.
  3. 1 2 S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Wu, '"n Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions", Journal of the ACM, 45(6):891-923, 1998.
  4. D. M. Mount and S. Arya, ANN: A Library for Approximate Nearest Neighbor Searching
  5. S. Arya, S., T. Malamatos, and D. M. Mount. Space-time Tradeoffs for Approximate Nearest Neighbor Searching. Journal of the ACM, 57(1): 1-54, 2009
  6. S. Arya, T. Malamatos, D. M. Mount and K. C. Wong. Optimal Expected-Case Planar Point Location. SIAM Journal on Computing, 37(2):584-610, 2007.
  7. J. S. B. Mitchell, D. M. Mount and C. H. Papadimitriou. The Discrete Geodesic Problem. SIAM Journal of Computing, 16(4):647-668, 1987
  8. "Global computing association names 57 fellows for outstanding contributions that propel technology today". Association for Computing Machinery. January 18, 2023. Retrieved 2023-01-18.