Dawn chorus (electromagnetic)

Last updated
VLF spectrogram of electromagnetic chorus, as received by the Stanford University VLF group's wave receiver at Palmer Station, Antarctica. The chorus can be seen between 1000 Hz and 3000 Hz, sandwiched between components of sferics Chorus electromagnetic palmer 2003-02-27 T085030.png
VLF spectrogram of electromagnetic chorus, as received by the Stanford University VLF group's wave receiver at Palmer Station, Antarctica. The chorus can be seen between 1000 Hz and 3000 Hz, sandwiched between components of sferics

The electromagnetic dawn chorus is a phenomenon that occurs most often at or shortly after dawn local time. It is believed to be generated by a Doppler-shifted cyclotron interaction between anisotropic distributions of energetic (> 40 keV) electrons and ambient background VLF noise.[ jargon ] These energetic electrons are generally injected into the inner magnetosphere at the onset of the substorm expansion phase. [1] [2] Dawn choruses occur more frequently during magnetic storms.

Contents

This phenomenon also occurs during aurorae, when it is termed an auroral chorus.

With the proper radio equipment, dawn chorus can be converted to sounds that resemble, coincidentally, birds' dawn chorus.

See also

Notes

  1. Nunn, D.; Omura, Y.; Matsumoto, H.; Nagano, I.; Yagitani, S. (1997). "The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code" (PDF). J. Geophys. Res. 102 (A12): 27083–27098. Bibcode:1997JGR...10227083N. doi: 10.1029/97JA02518 .
  2. Trakhtengerts, V. Y. (1999). "A generation mechanism for chorus emission". Ann. Geophys. 17 (1): 95–100. Bibcode:1999AnGeo..17...95T. doi: 10.1007/s00585-999-0095-4 .

Further reading

Related Research Articles

<span class="mw-page-title-main">Aurora</span> Natural luminous atmospheric effect observed chiefly at high latitudes

An aurora , also commonly known as the northern lights or southern lights, is a natural light display in Earth's sky, predominantly seen in high-latitude regions. Auroras display dynamic patterns of brilliant lights that appear as curtains, rays, spirals, or dynamic flickers covering the entire sky.

<span class="mw-page-title-main">Solar flare</span> Eruption of electromagnetic radiation

A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.

<span class="mw-page-title-main">High-frequency Active Auroral Research Program</span> Project to analyze the ionosphere

The High-frequency Active Auroral Research Program (HAARP) is a University of Alaska Fairbanks program which researches the ionosphere – the highest, ionized part of Earth's atmosphere.

<span class="mw-page-title-main">Space weather</span> Branch of space physics and aeronomy

Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the varying conditions within the Solar System and its heliosphere. This includes the effects of the solar wind, especially on the Earth's magnetosphere, ionosphere, thermosphere, and exosphere. Though physically distinct, space weather is analogous to the terrestrial weather of Earth's atmosphere. The term "space weather" was first used in the 1950s and popularized in the 1990s. Later, it prompted research into "space climate", the large-scale and long-term patterns of space weather.

<span class="mw-page-title-main">Geomagnetic storm</span> Disturbance of the Earths magnetosphere

A geomagnetic storm, also known as a magnetic storm, is a temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave.

Cyclotron radiation is electromagnetic radiation emitted by non-relativistic accelerating charged particles deflected by a magnetic field. The Lorentz force on the particles acts perpendicular to both the magnetic field lines and the particles' motion through them, creating an acceleration of charged particles that causes them to emit radiation as a result of the acceleration they undergo as they spiral around the lines of the magnetic field.

<span class="mw-page-title-main">Whistler (radio)</span> Very low frequency EM waves generated by lightning

A whistler is a very low frequency (VLF) electromagnetic (radio) wave generated by lightning. Frequencies of terrestrial whistlers are 1 kHz to 30 kHz, with maximum frequencies usually at 3 kHz to 5 kHz. Although they are electromagnetic waves, they occur at audio frequencies, and can be converted to audio using a suitable receiver. They are produced by lightning strikes where the impulse travels along the Earth's magnetic field lines from one hemisphere to the other. They undergo dispersion of several kHz due to the slower velocity of the lower frequencies through the plasma environments of the ionosphere and magnetosphere. Thus they are perceived as a descending tone which can last for a few seconds. The study of whistlers categorizes them into Pure Note, Diffuse, 2-Hop, and Echo Train types.

<span class="mw-page-title-main">Cluster II (spacecraft)</span> European Space Agency mission

Cluster II is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission is composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. In February 2021, Cluster II celebrated 20 years of successful scientific operations in space. As of March 2023, its mission has been extended until September 2024. The China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.

<span class="mw-page-title-main">Birkeland current</span> Currents flowing along geomagnetic field lines

A Birkeland current is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field and by bulk motions of plasma through the magnetosphere. The strength of the Birkeland currents changes with activity in the magnetosphere. Small scale variations in the upward current sheets accelerate magnetospheric electrons which, when they reach the upper atmosphere, create the Auroras Borealis and Australis.

<span class="mw-page-title-main">Plasmasphere</span> Region of Earths magnetosphere consisting of cool plasma

The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere. The outer boundary of the plasmasphere is known as the plasmapause, which is defined by an order of magnitude drop in plasma density. In 1963 American scientist Don Carpenter and Soviet astronomer Konstantin Gringauz proved the plasmasphere and plasmapause's existence from the analysis of very low frequency (VLF) whistler wave data. Traditionally, the plasmasphere has been regarded as a well behaved cold plasma with particle motion dominated entirely by the geomagnetic field and, hence, co-rotating with the Earth.

An auroral chorus is a series of electromagnetic waves at frequencies which resemble chirps, whistles, and quasi-musical sounds in predominantly rising tones when played as pressure waves (sound), which are created by geomagnetic storms also responsible for the auroras. The sounds last approximately 0.1 to 1.0 seconds. Other auroral sounds includes hissing, swishing, rustling and cracking.

<span class="mw-page-title-main">Radio atmospheric signal</span> Broadband electromagnetic impulse

A radio atmospheric signal or sferic is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges. Sferics may propagate from their lightning source without major attenuation in the Earth–ionosphere waveguide, and can be received thousands of kilometres from their source. On a time-domain plot, a sferic may appear as a single high-amplitude spike in the time-domain data. On a spectrogram, a sferic appears as a vertical stripe that may extend from a few kHz to several tens of kHz, depending on atmospheric conditions.

<span class="mw-page-title-main">Sprite (lightning)</span> Electrical discharges above thunderstorm clouds

Sprites or red sprites are large-scale electric discharges that occur in the mesosphere, high above thunderstorm clouds, or cumulonimbus, giving rise to a varied range of visual shapes flickering in the night sky. They are usually triggered by the discharges of positive lightning between an underlying thundercloud and the ground.

Robert A. Helliwell was an electrical engineer and professor at Stanford University. He was one of the pioneering scientists in the study of whistlers and related ionospheric phenomena.

<span class="mw-page-title-main">Hiss (electromagnetic)</span> An electromagnetic wave phenomenon

Electromagnetic hiss is a naturally occurring Extremely Low Frequency/Very Low Frequency electromagnetic wave that is generated in the plasma of either the Earth's ionosphere or magnetosphere. Its name is derived from its incoherent, structureless spectral properties which, when played through an audio system, sound like white noise.

Electron precipitation is an atmospheric phenomenon that occurs when previously trapped electrons enter the Earth's atmosphere, thus creating communications interferences and other disturbances. Electrons trapped by Earth's magnetic field spiral around field lines to form the Van Allen radiation belt. The electrons are from the solar wind and may remain trapped above Earth for an indefinite period of time. When broadband very low frequency (VLF) waves propagate the radiation belts, the electrons exit the radiation belt and "precipitate" into the ionosphere where the electrons will collide with ions. Electron precipitation is regularly linked to ozone depletion. It is often caused by lightning strikes.

<span class="mw-page-title-main">Solar phenomena</span> Natural phenomena within the Suns atmosphere

Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.

<span class="mw-page-title-main">STEVE</span> Atmospheric optical phenomenon, which appears as a light ribbon in the sky

STEVE is an atmospheric optical phenomenon that appears as a purple and green light ribbon in the sky, named in late 2016 by aurora watchers from Alberta, Canada. According to analysis of satellite data from the European Space Agency's Swarm mission, the phenomenon is caused by a 25 km (16 mi) wide ribbon of hot plasma at an altitude of 450 km (280 mi), with a temperature of 3,000 °C and flowing at a speed of 6 km/s (3.7 mi/s). The phenomenon is not rare, but had not been investigated and described scientifically prior to that time.

Wen Li is a space physicist at Boston University. Her research interests include space plasma waves, Earth's radiation belt physics, solar-wind magnetosphere coupling, energetic particle precipitation, and Jovian magnetosphere and aurora: She is a Fellow of the American Geophysical Union.