Dedekind-infinite set

Last updated

In mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers. [1]

Contents

A simple example is , the set of natural numbers. From Galileo's paradox, there exists a bijection that maps every natural number n to its square n2. Since the set of squares is a proper subset of , is Dedekind-infinite.

Until the foundational crisis of mathematics showed the need for a more careful treatment of set theory, most mathematicians assumed that a set is infinite if and only if it is Dedekind-infinite. In the early twentieth century, Zermelo–Fraenkel set theory, today the most commonly used form of axiomatic set theory, was proposed as an axiomatic system to formulate a theory of sets free of paradoxes such as Russell's paradox. Using the axioms of Zermelo–Fraenkel set theory with the originally highly controversial axiom of choice included (ZFC) one can show that a set is Dedekind-finite if and only if it is finite in the usual sense. However, there exists a model of Zermelo–Fraenkel set theory without the axiom of choice (ZF) in which there exists an infinite, Dedekind-finite set, showing that the axioms of ZF are not strong enough to prove that every set that is Dedekind-finite is finite. [2] [1] There are definitions of finiteness and infiniteness of sets besides the one given by Dedekind that do not depend on the axiom of choice.

A vaguely related notion is that of a Dedekind-finite ring.

Comparison with the usual definition of infinite set

This definition of "infinite set" should be compared with the usual definition: a set A is infinite when it cannot be put in bijection with a finite ordinal, namely a set of the form {0, 1, 2, ..., n1} for some natural number n – an infinite set is one that is literally "not finite", in the sense of bijection.

During the latter half of the 19th century, most mathematicians simply assumed that a set is infinite if and only if it is Dedekind-infinite. However, this equivalence cannot be proved with the axioms of Zermelo–Fraenkel set theory without the axiom of choice (AC) (usually denoted "ZF"). The full strength of AC is not needed to prove the equivalence; in fact, the equivalence of the two definitions is strictly weaker than the axiom of countable choice (CC). (See the references below.)

Dedekind-infinite sets in ZF

A set A is Dedekind-infinite if it satisfies any, and then all, of the following equivalent (over ZF) conditions:

it is dually Dedekind-infinite if:

it is weakly Dedekind-infinite if it satisfies any, and then all, of the following equivalent (over ZF) conditions:

and it is infinite if:

Then, ZF proves the following implications: Dedekind-infinite ⇒ dually Dedekind-infinite ⇒ weakly Dedekind-infinite ⇒ infinite.

There exist models of ZF having an infinite Dedekind-finite set. Let A be such a set, and let B be the set of finite injective sequences from A. Since A is infinite, the function "drop the last element" from B to itself is surjective but not injective, so B is dually Dedekind-infinite. However, since A is Dedekind-finite, then so is B (if B had a countably infinite subset, then using the fact that the elements of B are injective sequences, one could exhibit a countably infinite subset of A).

When sets have additional structures, both kinds of infiniteness can sometimes be proved equivalent over ZF. For instance, ZF proves that a well-ordered set is Dedekind-infinite if and only if it is infinite.

History

The term is named after the German mathematician Richard Dedekind, who first explicitly introduced the definition. It is notable that this definition was the first definition of "infinite" that did not rely on the definition of the natural numbers (unless one follows Poincaré and regards the notion of number as prior to even the notion of set). Although such a definition was known to Bernard Bolzano, he was prevented from publishing his work in any but the most obscure journals by the terms of his political exile from the University of Prague in 1819. Moreover, Bolzano's definition was more accurately a relation that held between two infinite sets, rather than a definition of an infinite set per se.

For a long time, many mathematicians did not even entertain the thought that there might be a distinction between the notions of infinite set and Dedekind-infinite set. In fact, the distinction was not really realised until after Ernst Zermelo formulated the AC explicitly. The existence of infinite, Dedekind-finite sets was studied by Bertrand Russell and Alfred North Whitehead in 1912; these sets were at first called mediate cardinals or Dedekind cardinals.

With the general acceptance of the axiom of choice among the mathematical community, these issues relating to infinite and Dedekind-infinite sets have become less central to most mathematicians. However, the study of Dedekind-infinite sets played an important role in the attempt to clarify the boundary between the finite and the infinite, and also an important role in the history of the AC.

Relation to the axiom of choice

Since every infinite well-ordered set is Dedekind-infinite, and since the AC is equivalent to the well-ordering theorem stating that every set can be well-ordered, clearly the general AC implies that every infinite set is Dedekind-infinite. However, the equivalence of the two definitions is much weaker than the full strength of AC.

In particular, there exists a model of ZF in which there exists an infinite set with no countably infinite subset. Hence, in this model, there exists an infinite, Dedekind-finite set. By the above, such a set cannot be well-ordered in this model.

If we assume the axiom CC (i. e., ACω), then it follows that every infinite set is Dedekind-infinite. However, the equivalence of these two definitions is in fact strictly weaker than even the CC. Explicitly, there exists a model of ZF in which every infinite set is Dedekind-infinite, yet the CC fails (assuming consistency of ZF).

Proof of equivalence to infinity, assuming axiom of countable choice

That every Dedekind-infinite set is infinite can be easily proven in ZF: every finite set has by definition a bijection with some finite ordinal n, and one can prove by induction on n that this is not Dedekind-infinite.

By using the axiom of countable choice (denotation: axiom CC) one can prove the converse, namely that every infinite set X is Dedekind-infinite, as follows:

First, define a function over the natural numbers (that is, over the finite ordinals) f : N → Power(Power(X)), so that for every natural number n, f(n) is the set of finite subsets of X of size n (i.e. that have a bijection with the finite ordinal n). f(n) is never empty, or otherwise X would be finite (as can be proven by induction on n).

The image of f is the countable set {f(n) | nN}, whose members are themselves infinite (and possibly uncountable) sets. By using the axiom of countable choice we may choose one member from each of these sets, and this member is itself a finite subset of X. More precisely, according to the axiom of countable choice, a (countable) set exists, G = {g(n) | nN}, so that for every natural number n, g(n) is a member of f(n) and is therefore a finite subset of X of size n.

Now, we define U as the union of the members of G. U is an infinite countable subset of X, and a bijection from the natural numbers to U, h : NU, can be easily defined. We may now define a bijection B : XX \ h(0) that takes every member not in U to itself, and takes h(n) for every natural number to h(n + 1). Hence, X is Dedekind-infinite, and we are done.

Generalizations

Expressed in category-theoretical terms, a set A is Dedekind-finite if in the category of sets, every monomorphism f : AA is an isomorphism. A von Neumann regular ring R has the analogous property in the category of (left or right) R-modules if and only if in R, xy = 1 implies yx = 1. More generally, a Dedekind-finite ring is any ring that satisfies the latter condition. Beware that a ring may be Dedekind-finite even if its underlying set is Dedekind-infinite, e.g. the integers.

Notes

  1. 1 2 Moore, Gregory H. (2013) [unabridged republication of the work originally published in 1982 as Volume 8 in the series "Studies in the History of Mathematics and Physical Sciences" by Springer-Verlag, New York]. Zermelo's Axiom of Choice: Its Origins, Development & Influence. Dover Publications. ISBN   978-0-486-48841-7.
  2. Herrlich, Horst (2006). Axiom of Choice. Lecture Notes in Mathematics 1876. Springer-Verlag. ISBN   978-3540309895.

Related Research Articles

<span class="mw-page-title-main">Axiom of choice</span> Axiom of set theory

In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.

In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.

<span class="mw-page-title-main">Cardinal number</span> Size of a possibly infinite set

In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter (aleph) marked with subscript indicating their rank among the infinite cardinals.

<span class="mw-page-title-main">Cardinality</span> Definition of the number of elements in a set

In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set contains 3 elements, and therefore has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set may also be called its size, when no confusion with other notions of size is possible.

In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,

In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than aleph-null, the cardinality of the natural numbers.

In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF.

<span class="mw-page-title-main">Infinite set</span> Set that is not a finite set

In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

An enumeration is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration depend on the discipline of study and the context of a given problem.

<span class="mw-page-title-main">Aleph number</span> Infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ).

In mathematics, two sets or classes A and B are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from A to B such that for every element y of B, there is exactly one element x of A with f(x) = y. Equinumerous sets are said to have the same cardinality (number of elements). The study of cardinality is often called equinumerosity (equalness-of-number). The terms equipollence (equalness-of-strength) and equipotence (equalness-of-power) are sometimes used instead.

<span class="mw-page-title-main">Axiom of countable choice</span>

The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N.

Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

An approach to the foundations of mathematics that is of relatively recent origin, Scott–Potter set theory is a collection of nested axiomatic set theories set out by the philosopher Michael Potter, building on earlier work by the mathematician Dana Scott and the philosopher George Boolos.

This article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter-intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set theory.

In mathematical logic, Diaconescu's theorem, or the Goodman–Myhill theorem, states that the full axiom of choice is sufficient to derive the law of the excluded middle or restricted forms of it.

In set theory, an amorphous set is an infinite set which is not the disjoint union of two infinite subsets.

In mathematics a group is a set together with a binary operation on the set called multiplication that obeys the group axioms. The axiom of choice is an axiom of ZFC set theory which in one form states that every set can be wellordered.

This is a glossary of set theory.

References