Designated verifier signature

Last updated

A designated verifier signature is a signature scheme in which signatures can only be verified by a single, designated verifier, designated as part of the signature creation. Designated verifier signatures were first proposed in 1996 by Jakobsson Markus, Kazue Sako, and Russell Impagliazzo. [1] Proposed as a way to combine authentication and off-the-record messages, designated verifier signatures allow authenticated, private conversations to take place.

Unlike in undeniable signature scheme the protocol of verifying is non-interactive; i.e., the signer chooses the designated verifier (or the set of designated verifiers) in advance and does not take part in the verification process.

See also

Related Research Articles

In law, non-repudiation is a situation where a statement's author cannot successfully dispute its authorship or the validity of an associated contract. The term is often seen in a legal setting when the authenticity of a signature is being challenged. In such an instance, the authenticity is being "repudiated".

<span class="mw-page-title-main">David Chaum</span> American computer scientist and cryptographer

David Lee Chaum is an American computer scientist, cryptographer, and inventor. He is known as a pioneer in cryptography and privacy-preserving technologies, and widely recognized as the inventor of digital cash. His 1982 dissertation "Computer Systems Established, Maintained, and Trusted by Mutually Suspicious Groups" is the first known proposal for a blockchain protocol. Complete with the code to implement the protocol, Chaum's dissertation proposed all but one element of the blockchain later detailed in the Bitcoin whitepaper. He has been referred to as "the father of online anonymity", and "the godfather of cryptocurrency".

Identity-based encryption (IBE), is an important primitive of identity-based cryptography. As such it is a type of public-key encryption in which the public key of a user is some unique information about the identity of the user. This means that a sender who has access to the public parameters of the system can encrypt a message using e.g. the text-value of the receiver's name or email address as a key. The receiver obtains its decryption key from a central authority, which needs to be trusted as it generates secret keys for every user.

An undeniable signature is a digital signature scheme which allows the signer to be selective to whom they allow to verify signatures. The scheme adds explicit signature repudiation, preventing a signer later refusing to verify a signature by omission; a situation that would devalue the signature in the eyes of the verifier. It was invented by David Chaum and Hans van Antwerpen in 1989.

In cryptography, a password-authenticated key agreement (PAK) method is an interactive method for two or more parties to establish cryptographic keys based on one or more party's knowledge of a password.

In cryptography, concrete security or exact security is a practice-oriented approach that aims to give more precise estimates of the computational complexities of adversarial tasks than polynomial equivalence would allow. It quantifies the security of a cryptosystem by bounding the probability of success for an adversary running for a fixed amount of time. Security proofs with precise analyses are referred to as concrete.

A group signature scheme is a method for allowing a member of a group to anonymously sign a message on behalf of the group. The concept was first introduced by David Chaum and Eugene van Heyst in 1991. For example, a group signature scheme could be used by an employee of a large company where it is sufficient for a verifier to know a message was signed by an employee, but not which particular employee signed it. Another application is for keycard access to restricted areas where it is inappropriate to track individual employee's movements, but necessary to secure areas to only employees in the group.

Digital credentials are the digital equivalent of paper-based credentials. Just as a paper-based credential could be a passport, a driver's license, a membership certificate or some kind of ticket to obtain some service, such as a cinema ticket or a public transport ticket, a digital credential is a proof of qualification, competence, or clearance that is attached to a person. Also, digital credentials prove something about their owner. Both types of credentials may contain personal information such as the person's name, birthplace, birthdate, and/or biometric information such as a picture or a finger print.

Distributed key generation (DKG) is a cryptographic process in which multiple parties contribute to the calculation of a shared public and private key set. Unlike most public key encryption models, distributed key generation does not rely on Trusted Third Parties. Instead, the participation of a threshold of honest parties determines whether a key pair can be computed successfully. Distributed key generation prevents single parties from having access to a private key. The involvement of many parties requires Distributed key generation to ensure secrecy in the presence of malicious contributions to the key calculation.

Multivariate cryptography is the generic term for asymmetric cryptographic primitives based on multivariate polynomials over a finite field . In certain cases those polynomials could be defined over both a ground and an extension field. If the polynomials have the degree two, we talk about multivariate quadratics. Solving systems of multivariate polynomial equations is proven to be NP-complete. That's why those schemes are often considered to be good candidates for post-quantum cryptography. Multivariate cryptography has been very productive in terms of design and cryptanalysis. Overall, the situation is now more stable and the strongest schemes have withstood the test of time. It is commonly admitted that Multivariate cryptography turned out to be more successful as an approach to build signature schemes primarily because multivariate schemes provide the shortest signature among post-quantum algorithms.

In cryptography, PKCS #1 is the first of a family of standards called Public-Key Cryptography Standards (PKCS), published by RSA Laboratories. It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography. It defines the mathematical properties of public and private keys, primitive operations for encryption and signatures, secure cryptographic schemes, and related ASN.1 syntax representations.

In cryptography, subliminal channels are covert channels that can be used to communicate secretly in normal looking communication over an insecure channel. Subliminal channels in digital signature crypto systems were found in 1984 by Gustavus Simmons.

In cryptography, the Fiat–Shamir heuristic is a technique for taking an interactive proof of knowledge and creating a digital signature based on it. This way, some fact can be publicly proven without revealing underlying information. The technique is due to Amos Fiat and Adi Shamir (1986). For the method to work, the original interactive proof must have the property of being public-coin, i.e. verifier's random coins are made public throughout the proof protocol.

Linked timestamping is a type of trusted timestamping where issued time-stamps are related to each other.

Post-quantum cryptography (PQC), sometimes referred to as quantum-proof, quantum-safe, or quantum-resistant, is the development of cryptographic algorithms that are thought to be secure against a cryptanalytic attack by a quantum computer. The problem with popular algorithms currently used in the market is that their security relies on one of three hard mathematical problems: the integer factorization problem, the discrete logarithm problem or the elliptic-curve discrete logarithm problem. All of these problems could be easily solved on a sufficiently powerful quantum computer running Shor's algorithm or even faster and less demanding alternatives.

<span class="mw-page-title-main">Moti Yung</span> Israeli computer scientist

Mordechai M. "Moti" Yung is a cryptographer and computer scientist known for his work on cryptovirology and kleptography.

In cryptography, server-based signatures are digital signatures in which a publicly available server participates in the signature creation process. This is in contrast to conventional digital signatures that are based on public-key cryptography and public-key infrastructure. With that, they assume that signers use their personal trusted computing bases for generating signatures without any communication with servers.

Markus Jakobsson is a computer security researcher, entrepreneur and writer, whose work is focused on the issue of digital security.

In cryptography, an accumulator is a one way membership hash function. It allows users to certify that potential candidates are a member of a certain set without revealing the individual members of the set. This concept was formally introduced by Josh Benaloh and Michael de Mare in 1993.

Hash-based cryptography is the generic term for constructions of cryptographic primitives based on the security of hash functions. It is of interest as a type of post-quantum cryptography.

References

  1. Jakobsson, Markus; Kazue Sako; Russell Impagliazzo (May 1996). "Designated Verifier Proofs and Their Applications" (PDF). In Ueli Maurer (ed.). Proceedings of Eurocrypt 1996. EUROCRYPT 1996. Vol. 1440. Saragossa, Spain: Springer-Verlag. pp. 199–205. doi:10.1007/3-540-49677-7_30. ISBN   978-3-540-65069-0.