Diamond coconut model

Last updated
In Diamond's model, people will only climb trees to pick coconuts if they believe that enough other people are also doing it. Coconut Yellow.JPG
In Diamond's model, people will only climb trees to pick coconuts if they believe that enough other people are also doing it.

The Diamond coconut model is an economic model constructed by the American economist and 2010 Nobel laureate Peter Diamond which analyzes how a search economy in which traders cannot find partners instantaneously operates. The model was first presented in a 1982 paper published in the Journal of Political Economy . The main implication of the model is that people's expectations as to the level of aggregate activity play a crucial role in actually determining this level of aggregate economic activity. A frequent interpretation of its conclusion, as applied to the labor market, is that the so-called natural rate of unemployment may not be unique (in fact there may exist a continuum of "natural rates") and even if it is unique, it may not be efficient. Diamond's model was of interest to New Keynesian economists who saw it as potential source of coordination failure, which could cause markets to fail to clear. [1]

Contents

The model takes its name from the abstract set up imagined by Diamond. He envisioned an island (a closed economy) populated by individuals who only consume coconuts. Coconuts are obtained by being picked (they are "produced") from palm trees at a cost. Because of a particular taboo existing on this island a person who has picked a coconut cannot consume it themselves but must find another person with a coconut. At that point the two individuals can trade their respective coconuts and eat them. The key point is that when an individual finds a palm tree, because climbing the tree is costly, they will only be willing to climb it to get a coconut if there are a sufficiently high number of other individuals who are willing to do likewise. If nobody else is obtaining coconuts then there won't be any potential trading partners and obtaining coconuts is not worth climbing the tree. Hence, what individuals believe others will do plays a crucial role in determining the overall outcome. As a result, people's (fully rational) expectations become a self-fulfilling prophecy and the economy can wind up with multiple equilibria, most if not all of them characterized by inefficiency.

Population flows in the model

The agents in the model are always in one of two "states"; they are either currently carrying a coconut and looking for someone to trade it with, or they are searching for a palm tree in order to possibly pick a coconut. The number of agents who are carrying a coconut at time t is denoted by (for "employed") and they find trading partners at the rate at which point they trade coconuts, earn income and become "searchers".

The fact that the probability of finding a trading partner is increasing in the number of people who already have coconuts - mathematically - represents a "thick market externality"; the "thicker" the market in the sense of more potential traders, the more trades occur. It involves an externality because each person who chooses to pick a coconut does so with only their own self-interest in mind, but the fact that they do so has an effect on the overall social outcome.

Population flows in the model Diamond coconut flow diagram.JPG
Population flows in the model

People who are currently looking for coconut palm trees find these at a random rate . This means that the finding of palm trees follows a Poisson process characterized by the parameter . If total population is normalized to 1 (hence, is the share of the population that is employed) then the number of searchers in this economy is .

The figure above illustrates the population flows in this economy.

The value of having a coconut or looking for one

Each state can be thought of as a form of an asset, for example, the asset "having a coconut". The present discounted value of this asset depends on the benefit or cost incurred when a person finds a trading partner or a palm tree (this is like a one time dividend payment), and the capital gain (or loss) involved in switching states when a trade or coconut-picking occurs. Additionally, out of steady state, the value of the asset may fluctuate over time.

Mathematically, the present discounted value of having a coconut is given by

where is the value of having a coconut, is the value of being in the state "looking for a palm tree", is the gain to be realized upon finding a trading partner and is the discount rate which measures individual's impatience. Likewise, the present discounted value of searching for palm trees is given by

where is the rate at which searchers find palm trees, and is the expected cost (hence it enters with a minus sign) of climbing a palm tree when one is found.

In the general version of the model, the cost of climbing a palm tree is a random draw from some (publicly known) probability distribution with non-negative support, for example the uniform distribution on . This means that on the island "some trees are tall and some are short", and as a result picking coconuts from them can be hard or easy.

Simple mathematical version of the model

In the most simple version of Diamond's model, the probability of finding a trading partner—another person who's carrying a coconut—is exactly equal to the share of the population that is currently in possession of a coconut, . Additionally the cost of obtaining a coconut when one finds a palm tree is constant, at (this is the "all trees are of the same height" assumption).

The evolution of the proportion of people who are currently carrying coconuts and looking for trading partners is given by:

if every searcher who finds a palm tree chooses to climb it and obtain a coconut, and
if every searcher who finds a palm tree chooses not to obtain a coconut when coming upon the opportunity of doing so.

In the first equation is just the number of searchers who happen to find a palm tree at a particular time (the "inflow" of coconut carriers), while is the number of previous coconut-carriers who managed to successfully find a trading partner and hence reverted to being searchers (the "outflow"). In the second equation, since nobody ever bothers to climb a tree and obtain coconuts, the number of coconut-carriers simply declines over time. The two potential adjustment paths are illustrated in the figure below.

Basic diagram of the Diamond model showing two possible adjustment paths. Basic diamond coconut model diagram.JPG
Basic diagram of the Diamond model showing two possible adjustment paths.

The steady state

In the steady state of this economy, the number of searchers and the number of coconut carriers has to be constant, . Hence there are two possible steady state in the simple version of the model. The "bad" outcome where nobody who finds a palm tree picks a coconut so that and an interior equilibrium where . The bad results occurs if everyone who finds a palm tree believes that not enough other people will pick coconuts and as a result it is not worth it to pick the coconut themselves. This then becomes a pessimistic self-fulfilling belief.

Whether or not the good outcome is possible depends on parameter values, and as these determine the value of each asset in steady state. In this case the value of the assets will be constant so that and we can solve for the difference between and :

For it to be worth it to climb a palm tree this difference has to be greater than the cost of climbing a tree. If we have which means no one will want to pick coconuts. Hence is indeed an equilibrium. Otherwise we need . Note that this is independent of while the given above is a function of only. This means that the critical value of could be below or above the "good" steady state value. If costs of climbing the tree are high, or the agents are very impatient (high ) then will be the only equilibrium. If and are low then there will be two equilibria, and which one the economy winds up at will depend on initial conditions (the level of employment that the economy begins with).

See also

Related Research Articles

<span class="mw-page-title-main">Mean value theorem</span> On the existence of a tangent to an arc parallel to the line through its endpoints

In mathematics, the mean value theorem states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval starting from local hypotheses about derivatives at points of the interval.

<span class="mw-page-title-main">Tangent</span> In mathematics, straight line touching a plane curve without crossing it

In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c if the line passes through the point (c, f(c)) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.

<span class="mw-page-title-main">Probability density function</span> Function whose integral over a region describes the probability of an event occurring in that region

In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample in the sample space can be interpreted as providing a relative likelihood that the value of the random variable would be equal to that sample. Probability density is the probability per unit length, in other words, while the absolute likelihood for a continuous random variable to take on any particular value is 0, the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample.

<span class="mw-page-title-main">Taylor's theorem</span> Approximation of a function by a truncated power series

In calculus, Taylor's theorem gives an approximation of a k-times differentiable function around a given point by a polynomial of degree k, called the kth-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order k of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.

<span class="mw-page-title-main">Logistic function</span> S-shaped curve

A logistic function or logistic curve is a common S-shaped curve with equation

In mathematics, Itô's lemma or Itô's formula is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values.

<span class="mw-page-title-main">Aircraft flight dynamics</span> Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.

The primitive equations are a set of nonlinear partial differential equations that are used to approximate global atmospheric flow and are used in most atmospheric models. They consist of three main sets of balance equations:

  1. A continuity equation: Representing the conservation of mass.
  2. Conservation of momentum: Consisting of a form of the Navier–Stokes equations that describe hydrodynamical flow on the surface of a sphere under the assumption that vertical motion is much smaller than horizontal motion (hydrostasis) and that the fluid layer depth is small compared to the radius of the sphere
  3. A thermal energy equation: Relating the overall temperature of the system to heat sources and sinks

Survival analysis is a branch of statistics for analyzing the expected duration of time until one event occurs, such as death in biological organisms and failure in mechanical systems. This topic is called reliability theory or reliability analysis in engineering, duration analysis or duration modelling in economics, and event history analysis in sociology. Survival analysis attempts to answer certain questions, such as what is the proportion of a population which will survive past a certain time? Of those that survive, at what rate will they die or fail? Can multiple causes of death or failure be taken into account? How do particular circumstances or characteristics increase or decrease the probability of survival?

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

In mathematical finance, a risk-neutral measure is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market, a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free.

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.

<span class="mw-page-title-main">Method of characteristics</span> Technique for solving hyperbolic partial differential equations

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

Compartmental models are a very general modelling technique. They are often applied to the mathematical modelling of infectious diseases. The population is assigned to compartments with labels – for example, S, I, or R,. People may progress between compartments. The order of the labels usually shows the flow patterns between the compartments; for example SEIS means susceptible, exposed, infectious, then susceptible again.

<span class="mw-page-title-main">Stability derivatives</span>

Stability derivatives, and also control derivatives, are measures of how particular forces and moments on an aircraft change as other parameters related to stability change. For a defined "trim" flight condition, changes and oscillations occur in these parameters. Equations of motion are used to analyze these changes and oscillations. Stability and control derivatives are used to linearize (simplify) these equations of motion so the stability of the vehicle can be more readily analyzed.

In mathematics, the theory of optimal stopping or early stopping is concerned with the problem of choosing a time to take a particular action, in order to maximise an expected reward or minimise an expected cost. Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance. A key example of an optimal stopping problem is the secretary problem. Optimal stopping problems can often be written in the form of a Bellman equation, and are therefore often solved using dynamic programming.

<span class="mw-page-title-main">Black–Scholes equation</span> Partial differential equation in mathematical finance

In mathematical finance, the Black–Scholes equation is a partial differential equation (PDE) governing the price evolution of a European call or European put under the Black–Scholes model. Broadly speaking, the term may refer to a similar PDE that can be derived for a variety of options, or more generally, derivatives.

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways..

<span class="mw-page-title-main">Radius of curvature</span> Radius of the circle which best approximates a curve at a given point

In differential geometry, the radius of curvature (Rc), R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof.

In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.

References

  1. "Mankiw, N Gregory and Romer, David. "Introduction." New Keynesian Economics. Vol. 1. 1991.