Digital manufacturing

Last updated

Digital manufacturing is an integrated approach to manufacturing that is centered around a computer system. [1] [ citation needed ] The transition to digital manufacturing has become more popular with the rise in the quantity and quality of computer systems in manufacturing plants. As more automated tools have become used in manufacturing plants it has become necessary to model, simulate, and analyze all of the machines, tooling, and input materials in order to optimize the manufacturing process. [2] Overall, digital manufacturing can be seen sharing the same goals as computer-integrated manufacturing (CIM), flexible manufacturing, lean manufacturing, and design for manufacturability (DFM). The main difference is that digital manufacturing was evolved for use in the computerized world.

Contents

As part of Manufacturing USA, Congress and the U.S. Department of Defense established MxD (Manufacturing x Digital), the nation's digital manufacturing institute, to speed adoption of these digital tools.

Three dimensional modeling

Manufacturing engineers use 3D modeling software to design the tools and machinery necessary for their intended applications. The software allows them to design the factory floor layout and the production flow. This technique lets engineers analyze the current manufacturing processes and allows them to search for ways to increase efficiency in production before production even begins.

Simulation

Simulation can be used to model and test a system's behavior. Simulation also provides engineers with a tool for inexpensive, fast, and secure analysis to test how changes in a system can affect the performance of that system. [3]

Robcad is a popular software used in digital manufacturing. Models of automated machinery and production lines can be created and simulated in real time. Robotic simulation using Robcad software.jpg
Robcad is a popular software used in digital manufacturing. Models of automated machinery and production lines can be created and simulated in real time.

These models can be classified into the following: [3]

Applications of simulation can be assigned to: [3]

Analysis

Digital manufacturing systems often incorporate optimization capabilities to reduce time, cost, and improve the efficiency of most processes. These systems improve optimization of floor schedules, production planning, and decision making. The system analyzes feedback from production, such as deviations or problems in the manufacturing system, and generates solutions for handling them. [4]

In addition, many technologies analyze data from simulations in order to calculate a design that is optimal before it is even built. [5]

Debate continues on the impact of such systems on the manufacturing workforce. Econometric models have found that each newly installed robot displaces 1.6 manufacturing workers on average. Those models also have forecasted that by 2030 as many as 20 million additional manufacturing jobs worldwide could be displaced due to robotization. [6]

However, other research has found evidence, not of job losses, but of a skills gap. [7] Digital manufacturing is creating hundreds of new data-centric manufacturing jobs — roles like “collaborative robotics technician” and “predictive maintenance systems specialist" — but not enough available workers with the skills and training necessary to fill them. [8]

Tooling and processes

There are many different tooling processes that digital manufacturing utilizes. However, every digital manufacturing process involves the use of computerized numerical controlled machines (CNC). This technology is crucial in digital manufacturing as it not only enables mass production and flexibility, but it also provides a link between a CAD model and production. [9] The two primary categories of CNC tooling are additive and subtractive. Major strides in additive manufacturing have come about recently and are at the forefront of digital manufacturing. These processes allow machines to address every element of a part no matter the complexity of its shape. [4]

Examples of additive tooling and processes

Example of Laminated object manufacturing process Laminated object manufacturing: principle drawing. 1 Supply roll. 2 Heated laminated roll. 3 Laser cutting beam. 4 Prism steering device. 5 Laser. 6 Laminated shape. 7 Movable table. 8 Waste roll (with cutout shapes). Laminated object manufacturing.png
Example of Laminated object manufacturing process Laminated object manufacturing: principle drawing. 1 Supply roll. 2 Heated laminated roll. 3 Laser cutting beam. 4 Prism steering device. 5 Laser. 6 Laminated shape. 7 Movable table. 8 Waste roll (with cutout shapes).

Examples of subtractive tooling and processes

A CNC waterjet cutter is an example of the types of computer controlled tooling that are essential to digital manufacturing. CNC water jet cutter.jpg
A CNC waterjet cutter is an example of the types of computer controlled tooling that are essential to digital manufacturing.

Benefits

Types

On demand

Cloud-based design and manufacturing

Cloud-Based Design (CBD) refers to a model that incorporates social network sites, cloud computing, and other web technologies to aid in cloud design services. This type of system must be cloud computing-based, be accessible from mobile devices, and must be able to manage complex information. Autodesk Fusion 360 is an example CBD. [16]

Cloud-Based Manufacturing (CBM) refers to a model that utilizes the access to open information from various resources to develop reconfigurable production lines to improve efficiency, reduce costs, and improve response to customer needs. [16] A number of online manufacturing platforms [17] enables users to upload their 3D files for DFM analysis and Manufacture.

See also

Related Research Articles

<span class="mw-page-title-main">Computer-aided manufacturing</span> Use of software to control industrial processes

Computer-aided manufacturing (CAM) also known as computer-aided modeling or computer-aided machining is the use of software to control machine tools in the manufacturing of work pieces. This is not the only definition for CAM, but it is the most common. It may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage. Its primary purpose is to create a faster production process and components and tooling with more precise dimensions and material consistency, which in some cases, uses only the required amount of raw material, while simultaneously reducing energy consumption. CAM is now a system used in schools and lower educational purposes. CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software, which then controls the machine tool. CAM is used in many schools alongside computer-aided design (CAD) to create objects.

<span class="mw-page-title-main">Machining</span> Material-removal process; manufacturing process

Machining is a process in which a material is cut to a desired final shape and size by a controlled material-removal process. The methods that have this common theme are collectively called subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing, which uses controlled addition of material.

<span class="mw-page-title-main">Numerical control</span> Computer control of machine tools, lathes and milling machines, also used on 3D printers

Numerical control is the automated control of machining tools by means of a computer. A CNC machine processes a piece of material to meet specifications by following coded programmed instructions and without a manual operator directly controlling the machining operation.

<span class="mw-page-title-main">Selective laser sintering</span> 3D printing technique

Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power and heat source to sinter powdered material, aiming the laser automatically at points in space defined by a 3D model, binding the material together to create a solid structure. It is similar to selective laser melting; the two are instantiations of the same concept but differ in technical details. SLS is a relatively new technology that so far has mainly been used for rapid prototyping and for low-volume production of component parts. Production roles are expanding as the commercialization of AM technology improves.

<span class="mw-page-title-main">Printed circuit board milling</span>

Printed circuit board milling is the process of removing areas of copper from a sheet of printed circuit board material to recreate the pads, signal traces and structures according to patterns from a digital circuit board plan known as a layout file. Similar to the more common and well known chemical PCB etch process, the PCB milling process is subtractive: material is removed to create the electrical isolation and ground planes required. However, unlike the chemical etch process, PCB milling is typically a non-chemical process and as such it can be completed in a typical office or lab environment without exposure to hazardous chemicals. High quality circuit boards can be produced using either process. In the case of PCB milling, the quality of a circuit board is chiefly determined by the system's true, or weighted, milling accuracy and control as well as the condition of the milling bits and their respective feed/rotational speeds. By contrast, in the chemical etch process, the quality of a circuit board depends on the accuracy and/or quality of the mask used to protect the copper from the chemicals and the state of the etching chemicals.

<span class="mw-page-title-main">3D printing</span> Additive process used to make a three-dimensional object

3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, with material being added together, typically layer by layer.

<span class="mw-page-title-main">Tool and cutter grinder</span>

A Tool and Cutter Grinder is used to sharpen milling cutters and tool bits along with a host of other cutting tools.

A Model maker is a professional Craftsperson who creates a three-dimensional representation of a design or concept. Most products in use and in development today first take form as a model. This "model" may be an exacting duplicate (prototype) of the future design or a simple mock-up of the general shape or concept. Many prototype models are used for testing physical properties of the design, others for usability and marketing studies.

<span class="mw-page-title-main">Rapid prototyping</span> Group of techniques to quickly construct physical objects

Rapid prototyping is a group of techniques used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design (CAD) data. Construction of the part or assembly is usually done using 3D printing or "additive layer manufacturing" technology.

Digital modeling and fabrication is a design and production process that combines 3D modeling or computing-aided design (CAD) with additive and subtractive manufacturing. Additive manufacturing is also known as 3D printing, while subtractive manufacturing may also be referred to as machining, and many other technologies can be exploited to physically produce the designed objects.

<span class="mw-page-title-main">WorkNC</span>

WorkNC is a Computer aided manufacturing (CAM) software developed by Sescoi for multi-axis machining.

<span class="mw-page-title-main">Guitar manufacturing</span>

Guitar manufacturing is the use of machines, tools, and labor in the production of electric and acoustic guitars. This phrase may be in reference to handcrafting guitars using traditional methods or assembly line production in large quantities using modern methods. Guitar manufacturing can also be broken into several categories such as body manufacturing and neck manufacturing, among others. Guitar manufacturing includes the production of alto, classical, tenor, and bass tuned guitars.

<span class="mw-page-title-main">Selective laser melting</span> 3D printing technique

Selective laser melting (SLM) is one of many proprietary names for a metal additive manufacturing (AM) technology that uses a bed of powder with a source of heat to create metal parts. Also known as direct metal laser sintering (DMLS), the ASTM standard term is powder bed fusion (PBF). PBF is a rapid prototyping, 3D printing, or additive manufacturing technique designed to use a high power-density laser to melt and fuse metallic powders together.

Solid Concepts, Inc. is a custom manufacturing company engaged in engineering, manufacturing, production, and prototyping. The company is headquartered in Valencia, California, in the Los Angeles County area, with six other facilities located around the United States. Solid Concepts is an additive manufacturing service provider as well as a major manufacturer of business products, aerospace, unmanned systems, medical equipment and devices, foundry cast patterns, industrial equipment and design, and transportation parts.

Alumide is a material used in 3D printing consisting of nylon filled with aluminium dust, its name being a combination of the words aluminium and polyamide. Models are printed by sintering a tray of powder, layer by layer. While it is much stiffer than other materials used in 3D printing, it can also withstand much higher thermal loads, maintaining its shape at temperatures that would cause thermoplastic compounds such as polylactic acid to become molten.

Three-dimensional (3D) microfabrication refers to manufacturing techniques that involve the layering of materials to produce a three-dimensional structure at a microscopic scale. These structures are usually on the scale of micrometers and are popular in microelectronics and microelectromechanical systems.

Design for additive manufacturing is design for manufacturability as applied to additive manufacturing (AM). It is a general type of design methods or tools whereby functional performance and/or other key product life-cycle considerations such as manufacturability, reliability, and cost can be optimized subjected to the capabilities of additive manufacturing technologies.

<span class="mw-page-title-main">Applications of 3D printing</span>

In recent years, 3D printing has developed significantly and can now perform crucial roles in many applications, with the most common applications being manufacturing, medicine, architecture, custom art and design, and can vary from fully functional to purely aesthetic applications.

<span class="mw-page-title-main">3D printing processes</span> List of 3D printing processes

A variety of processes, equipment, and materials are used in the production of a three-dimensional object via additive manufacturing. 3D printing is also known as additive manufacturing, because the numerous available 3D printing process tend to be additive in nature, with a few key differences in the technologies and the materials used in this process.

<span class="mw-page-title-main">Fusion 360</span> Computer-aided design (CAD) software application

Fusion 360 is a commercial computer-aided design (CAD), computer-aided manufacturing (CAM), computer-aided engineering (CAE) and printed circuit board (PCB) design software application, developed by Autodesk. It is available for Windows, macOS and web browser, with simplified applications available for Android and iOS. Fusion 360 is licensed as a paid subscription, with a free limited home-based, non-commercial personal edition available.

References

  1. "Digital Manufacturing -- The Factory of the Future is Here Today, in: IndustryWeek". Jan 10, 2017.
  2. 1 2 3 4 "PLM−Product Lifecycle Management".
  3. 1 2 3 Mourtzis, Dimitris (2015). "The role of simulation in digital manufacturing: applications and outlook". International Journal of Computer Integrated Manufacturing. 28: 3–24. doi:10.1080/0951192X.2013.800234. S2CID   205630086.
  4. 1 2 Bredt, James (November 17, 2000). Bains, Sunny; Irakliotis, Leo J. (eds.). "Digital manufacturing". Critical Technologies for the Future of Computing. 150: 150. Bibcode:2000SPIE.4109..150B. doi:10.1117/12.409215. S2CID   173185990.
  5. "Design and Digital Manufacturing - PARC, a Xerox company". Archived from the original on 2016-02-02. Retrieved 2016-02-14.
  6. https://cdn2.hubspot.net/hubfs/2240363/Report%20-%20How%20Robots%20Change%20the%20World.pdf [ bare URL PDF ]
  7. "The future of work in manufacturing".
  8. "Jobs Taxonomy: Defining Manufacturing Jobs of the Future | MXD".
  9. Chryssolouris, G (June 20, 2008). "Digital manufacturing: History, perspectives, and outlook". Journal of Engineering Manufacture.
  10. 1 2 3 Lee, Kunwoo (1999). Principles of CAD/CAM/CAE Systems. Reading, MA: Addison-Wesley.
  11. Cooper, Kenneth G., 1973- (2001). Rapid prototyping technology : selection and application. New York: Marcel Dekker. pp. 27, 34. ISBN   0-8247-0261-1. OCLC   45873626.{{cite book}}: CS1 maint: multiple names: authors list (link)
  12. Huang, Samuel (July 2013). "Additive manufacturing and its societal impact: a literature review". International Journal of Advanced Manufacturing Technology. 67 (5–8): 1191–1203. doi:10.1007/s00170-012-4558-5. S2CID   109261207.
  13. Hon, K.K.B (July 1, 2007). "Digital additive manufacturing: From rapid prototyping to rapid manufacturing". Proceedings of the 35th International MATADOR 2007 Conference.
  14. "Direct Digital Manufacturing: The Industrial Game-Changer You've Never Heard of". 2001-11-30.
  15. Yan, Yongnian (June 2009). "Rapid Prototyping and Manufacturing Technology: Principle, Representative Technics, Applications, and Development Trends". Tsinghua Science and Technology. 14: 1–12. doi:10.1016/S1007-0214(09)70059-8.
  16. 1 2 Wu, Dazhong; Rosen, David W.; Wang, Lihui; Schaefer, Dirk (2015). "Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation" (PDF). Computer-Aided Design. 59: 1–14. doi:10.1016/j.cad.2014.07.006. S2CID   9315605.
  17. "Geomiq - Online Manufacturing for CNC, Injection Moulding, Sheet Metal". Geomiq. Retrieved 2020-03-08.