Digital radio frequency memory

Last updated

Digital Radio Frequency Memory (DRFM) is an electronic method for digitally capturing and retransmitting RF signals. DRFM systems are typically used in radar jamming, although applications in cellular communications are becoming more common.

Contents

Overview

A DRFM system is designed to digitize an incoming RF input signal at a frequency and bandwidth necessary to adequately represent the signal, then reconstruct that RF signal when required. The most significant aspect of DRFM is that as a digital "duplicate" of the received signal, it is coherent with the source of the received signal. As opposed to analog "memory loops", there is no signal degradation caused by continuously cycling the energy through a front-end amplifier which allows for greater range errors for reactive jamming and allows for predictive jamming. A DRFM system may modify the signal prior to retransmitting which can alter the signature of the false target; adjusting its apparent radar cross section, range, velocity, and angle. DRFMs present a significant obstacle for radar sensors.

The earliest reference to a digital means of storage of RF pulse signals is an article in the Jan/Feb 1975 issue of Electronic Warfare, a publication of the Association of Old Crows, written by Sheldon C. Spector, entitled "A Coherent Microwave Memory Using Digital Storage: The Loopless Memory Loop".

An example of the application of DRFM in jammers: The DRFM digitizes the received signal and stores a coherent copy in digital memory. As needed, the signal is replicated and retransmitted. Being a coherent representation of the original signal, the transmitting radar will not be able to distinguish it from other legitimate signals it receives and processes as targets. As the signal is stored in memory, it can be used to create false targets both behind (reactive jamming) and ahead of (predictive jamming) the target intended for protection. Slight variations in frequency can be made to create Doppler (velocity) errors in the victim receiver as well. DRFM can also be used to create distorted phase-fronts at the victim receive antenna which is essential for countering monopulse radar angular measurement techniques.

Use in hardware-in-the-loop (HWIL) simulation

Since a DRFM system is designed to create a false target to a radar system, this technology can be employed to perform hardware-in-the-loop simulation. [1] [2] Hardware-in-the-loop simulation is an aid to the development of new radar systems, which allows for testing and evaluation of the radar system earlier in the design cycle. This type of testing reduces the cost of development, for example, expensive initial flight trials for airborne radars can now be moved to the laboratory. The radar can be tested either through direct coupling, or through air coupling with antennas. Testing the radar in a closed loop HWIL environment with a DRFM allows test case scenarios to be simulated that covers a larger number of test parameters than would be possible in open-air test ranges.

Related Research Articles

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, and motor vehicles, and map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

<span class="mw-page-title-main">Electromagnetic compatibility</span> Electrical engineering concept

Electromagnetic compatibility (EMC) is the ability of electrical equipment and systems to function acceptably in their electromagnetic environment, by limiting the unintentional generation, propagation and reception of electromagnetic energy which may cause unwanted effects such as electromagnetic interference (EMI) or even physical damage in operational equipment. The goal of EMC is the correct operation of different equipment in a common electromagnetic environment. It is also the name given to the associated branch of electrical engineering.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

<span class="mw-page-title-main">Spectrum analyzer</span> Electronic testing device

A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, spectral compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate transducer. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a monochromator to make measurements.

<span class="mw-page-title-main">Mixed-signal integrated circuit</span> Integrated circuit

A mixed-signal integrated circuit is any integrated circuit that has both analog circuits and digital circuits on a single semiconductor die. Their usage has grown dramatically with the increased use of cell phones, telecommunications, portable electronics, and automobiles with electronics and digital sensors.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

Radar jamming and deception is a form of electronic countermeasures that intentionally sends out radio frequency signals to interfere with the operation of radar by saturating its receiver with noise or false information. Concepts that blanket the radar with signals so its display cannot be read are normally known as jamming, while systems that produce confusing or contradictory signals are known as deception, but it is also common for all such systems to be referred to as jamming.

Monopulse radar is a radar system that uses additional encoding of the radio signal to provide accurate directional information. The name refers to its ability to extract range and direction from a single signal pulse.

Constant false alarm rate (CFAR) detection refers to a common form of adaptive algorithm used in radar systems to detect target returns against a background of noise, clutter and interference.

<span class="mw-page-title-main">AN/SPS-48</span>

The AN/SPS-48 is a US naval electronically scanned array, air search three-dimensional radar system manufactured by ITT Exelis and deployed in the 1960s as the primary air search sensor for anti-aircraft warships. The deployment of the AN/SPY-1 and the end of the Cold War led to the decommissioning of many such ships, and many of these vessel's AN/SPS-48 sets were reused on aircraft carriers and amphibious ships where it is used to direct targets for air defense systems such as the Sea Sparrow and RIM-116 SAM missiles. Existing sets are being modernized under the ROAR program to AN/SPS-48G standard for better reliability and usability.

Hardware-in-the-loop (HIL) simulation, HWIL, or HITL, is a technique that is used in the development and testing of complex real-time embedded systems. HIL simulation provides an effective testing platform by adding the complexity of the process-actuator system, known as a plant, to the test platform. The complexity of the plant under control is included in testing and development by adding a mathematical representation of all related dynamic systems. These mathematical representations are referred to as the "plant simulation". The embedded system to be tested interacts with this plant simulation.

A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

Radar engineering details are technical details pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment. This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.

Radiofrequency MASINT is one of the six major disciplines generally accepted to make up the field of Measurement and Signature Intelligence (MASINT), with due regard that the MASINT subdisciplines may overlap, and MASINT, in turn, is complementary to more traditional intelligence collection and analysis disciplines such as SIGINT and IMINT. MASINT encompasses intelligence gathering activities that bring together disparate elements that do not fit within the definitions of Signals Intelligence (SIGINT), Imagery Intelligence (IMINT), or Human Intelligence (HUMINT).

Radar MASINT is a subdiscipline of measurement and signature intelligence (MASINT) and refers to intelligence gathering activities that bring together disparate elements that do not fit within the definitions of signals intelligence (SIGINT), imagery intelligence (IMINT), or human intelligence (HUMINT).

<span class="mw-page-title-main">Wave radar</span> Technology for measuring surface waves on water

Wave radar is a type of radar for measuring wind waves. Several instruments based on a variety of different concepts and techniques are available, and these are all often called. This article, gives a brief description of the most common ground-based radar remote sensing techniques.

Moving target indication (MTI) is a mode of operation of a radar to discriminate a target against the clutter. It describes a variety of techniques used for finding moving objects, like an aircraft, and filter out unmoving ones, like hills or trees. It contrasts with the modern stationary target indication (STI) technique, which uses details of the signal to directly determine the mechanical properties of the reflecting objects and thereby find targets whether they are moving or not.

<span class="mw-page-title-main">BriteCloud</span> Digital Radio Frequency Memory jammer

BriteCloud is a self-contained expendable Digital Radio Frequency Memory (DRFM) jammer developed by Selex ES to help protect military aircraft. The decoy was launched by Selex ES at a conference held at the Churchill War Rooms, London on 6 November 2013.

<span class="mw-page-title-main">Photonic radar</span>

Photonic radar is a technique by which radar may be produced and analysed with the help of photonics rather than traditional RF engineering techniques. The frequency of the radar is still in the RF, but lasers are used to create and analyse the RF signals with high precision.

The AR-320 is a 3D early warning radar developed by the UK's Plessey in partnership with US-based ITT-Gilfillan. The system combined the receiver electronics, computer systems and displays of the earlier Plessey AR-3D with a Gilfillan-developed transmitter and planar array antenna from their S320 series. The main advantage over the AR-3D was the ability to shift frequencies to provide a level of frequency agility and thus improve its resistance to jamming.

References

  1. JJ. Strydom and JE. Cillers, "Advances in the testing and evaluation of airborne radar through realtime simulation of synthetic clutter," 48th Annual AOC International Symposium and Convention, Washington, DC, USA, 13–16 November 2011
  2. JJ. Strydom, E. Pienaar, JE. Cillers and K. Olivier, "Advances in the realtime simulation of synthetic clutter for radar testing and evaluation," 47th Annual AOC International Symposium and Convention, Atlanta, Georgia, USA, 3–7 October 2010