Digital storage oscilloscope

Last updated
A Tektronix TDS210 digital oscilloscope Digitaloszilloskop IMGP1971 WP.jpg
A Tektronix TDS210 digital oscilloscope

A digital storage oscilloscope (DSO) is an oscilloscope which stores and analyses the input signal digitally rather than using analog techniques. It is now the most common type of oscilloscope in use because of the advanced trigger, storage, display and measurement features which it typically provides. [1]

Contents

The input analogue signal is sampled and then converted into a digital record of the amplitude of the signal at each sample time. The sampling frequency should be not less than the Nyquist rate to avoid aliasing. These digital values are then turned back into an analogue signal for display on a cathode ray tube (CRT), or transformed as needed for the various possible types of output—liquid crystal display, chart recorder, plotter or network interface. [2]

Digital storage oscilloscope costs vary widely; bench-top self-contained instruments (complete with displays) start at US$300 or even less, with high-performance models selling for tens of thousands of dollars. Small, pocket-size models, limited in function, may retail for as little as US$50. [3]

Comparison with analog storage

The principal advantage over analog storage is that the stored traces are as bright, as sharply defined, and written as quickly as non-stored traces. Traces can be stored indefinitely or written out to some external data storage device and reloaded. This allows, for example, comparison of an acquired trace from a system under test with a standard trace acquired from a known-good system. Many models can display the waveform prior to the trigger signal.

Digital oscilloscopes usually analyze waveforms and provide numerical values as well as visual displays. These values typically include averages, maxima and minima, root mean square (RMS) and frequencies. They may be used to capture transient signals when operated in a single sweep mode, without the brightness and writing speed limitations of an analog storage oscilloscope. [4]

The displayed trace can be manipulated after acquisition; a portion of the display can be magnified to make fine detail more visible, or a long trace can be examined in a single display to identify areas of interest. Many instruments allow a stored trace to be annotated by the user.

Many digital oscilloscopes use flat panel displays similar to those made in high volumes for computers and television displays.

Digital storage oscilloscopes may include interfaces such as a parallel printer port, RS-232 serial port, IEEE-488 bus, USB port, or Ethernet, allowing remote or automatic control and transfer of captured waveforms to external display or storage.

PC based

A personal computer-based digital oscilloscope relies on a PC for user interface and display. The "front end" circuits, consisting of input amplifiers and analog to digital converters, are packaged separately and communicate with the PC over USB, Ethernet, or other interfaces. In one format, the "front end" is assembled on a plug-in expansion card that plugs into the computer backplane. PC based oscilloscopes may be less costly than an equivalent self-contained instrument as they can use the memory, display and keyboard of the attached PC. Displays may be larger, and acquired data can be easily transferred to PC hosted application software such as spread sheets. However, the interface to the host PC may limit the maximum data rate for acquisition, and the host PC may produce sufficient electromagnetic noise to interfere with measurements. [5]

Related Research Articles

<span class="mw-page-title-main">Sound card</span> Expansion card that provides input and output of audio signals

A sound card is an internal expansion card that provides input and output of audio signals to and from a computer under the control of computer programs. The term sound card is also applied to external audio interfaces used for professional audio applications.

<span class="mw-page-title-main">Logic analyzer</span> Electronic test instrument that measures multiple signals from a circuit

A logic analyzer is an electronic instrument that captures and displays multiple signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, assembly language, or may correlate assembly with source-level software. Logic analyzers have advanced triggering capabilities, and are useful when a user needs to see the timing relationships between many signals in a digital system.

<span class="mw-page-title-main">Multimeter</span> Electronic measuring instrument that combines several measurement functions in one unit

A multimeter is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case can be used as a voltmeter, ammeter, and ohmmeter. Some feature the measurement of additional properties such as temperature and capacitance.

<span class="mw-page-title-main">Digital audio</span> Technology that records, stores, and reproduces sound

Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit sample depth. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s.

<span class="mw-page-title-main">Data acquisition</span> Process of sampling signals from sensors and converting into digital data

Data acquisition is the process of sampling signals that measure real-world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems, abbreviated by the acronyms DAS,DAQ, or DAU, typically convert analog waveforms into digital values for processing. The components of data acquisition systems include:

<span class="mw-page-title-main">Electronic test equipment</span> Testing appliance for electronics systems

Electronic test equipment is used to create signals and capture responses from electronic devices under test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced. Use of electronic test equipment is essential to any serious work on electronics systems.

<span class="mw-page-title-main">Tektronix</span> American test and measurement devices company

Tektronix, Inc., historically widely known as Tek, is an American company best known for manufacturing test and measurement devices such as oscilloscopes, logic analyzers, and video and mobile test protocol equipment.

<span class="mw-page-title-main">Automatic test equipment</span> Apparatus used in hardware testing that carries out a series of tests automatically

Automatic test equipment or automated test equipment (ATE) is any apparatus that performs tests on a device, known as the device under test (DUT), equipment under test (EUT) or unit under test (UUT), using automation to quickly perform measurements and evaluate the test results. An ATE can be a simple computer-controlled digital multimeter, or a complicated system containing dozens of complex test instruments capable of automatically testing and diagnosing faults in sophisticated electronic packaged parts or on wafer testing, including system on chips and integrated circuits.

<span class="mw-page-title-main">Korg DW-8000</span> Hybrid digital-analog synthesizer

The Korg DW-8000 synthesizer is an eight-voice polyphonic hybrid digital-analog synthesizer 61-note keyboard instrument released in 1985. By the time of its launch, Korg had already begun a common trend in 1980s synthesizer design: using numerical codes to access or change parameters with its predecessor - the Korg Poly-61, which was widely regarded as the company's first "knobless" synthesizer. This was a move away from the heavily laden, complex control panels of earlier designs.

<span class="mw-page-title-main">Yamaha Motif</span> Series of music workstations

The Yamaha Motif is a series of music workstation synthesizers, first released by Yamaha Corporation in August 2001. The Motif replaced the EX series in Yamaha's line-up and was also based on the early Yamaha S series. Other workstations in the same class are the Korg Kronos and the Roland Fantom G. The series' successor is Yamaha Montage.

<span class="mw-page-title-main">True RMS converter</span>

For the measurement of an alternating current the signal is often converted into a direct current of equivalent value, the root mean square (RMS). Simple instrumentation and signal converters carry out this conversion by filtering the signal into an average rectified value and applying a correction factor. The value of the correction factor applied is only correct if the input signal is sinusoidal.

<span class="mw-page-title-main">Oscilloscope</span> Instrument for displaying time-varying signals

An oscilloscope is a type of electronic test instrument that graphically displays varying electrical voltages as a two-dimensional plot of one or more signals as a function of time. The main purposes are to display repetitive or single waveforms on the screen that would otherwise occur too briefly to be perceived by the human eye. The displayed waveform can then be analyzed for properties such as amplitude, frequency, rise time, time interval, distortion, and others. Originally, calculation of these values required manually measuring the waveform against the scales built into the screen of the instrument. Modern digital instruments may calculate and display these properties directly.

A digital pattern generator is a piece of electronic test equipment or software used to generate digital electronic stimuli. Digital electronics stimuli are a specific kind of electrical waveform varying between two conventional voltages that correspond to two logic states. The main purpose of a digital pattern generator is to stimulate the inputs of a digital electronic device. For that reason, the voltage levels generated by a digital pattern generator are often compatible with digital electronics I/O standards – TTL, LVTTL, LVCMOS and LVDS, for instance.

Audio connectors and video connectors are electrical or optical connectors for carrying audio or video signals. Audio interfaces or video interfaces define physical parameters and interpretation of signals. For digital audio and digital video, this can be thought of as defining the physical layer, data link layer, and most or all of the application layer. For analog audio and analog video these functions are all represented in a single signal specification like NTSC or the direct speaker-driving signal of analog audio.

This is a subdivision of the Oscilloscope article, discussing the various types and models of oscilloscopes in greater detail.

<span class="mw-page-title-main">History of the oscilloscope</span>


The history of the oscilloscope was fundamental to science because an oscilloscope is a device for viewing waveform oscillations, as of electrical voltage or current, in order to measure frequency and other wave characteristics. This was important in developing electromagnetic theory. The first recordings of waveforms were with a galvanometer coupled to a mechanical drawing system dating from the second decade of the 19th century. The modern day digital oscilloscope is a consequence of multiple generations of development of the oscillograph, cathode-ray tubes, analog oscilloscopes, and digital electronics.

Tektronix vintage analog oscilloscopes technologies and evolution. The company was founded in the mid-1940s to produce oscilloscopes.

<span class="mw-page-title-main">CompactDAQ</span>

CompactDAQ is a data acquisition platform built by National Instruments that includes a broad set of compatible hardware and software. CompactDAQ integrates hardware for data I/O with LabVIEW software to enable engineers to collect, process and analyse sensor data. CompactDAQ systems are less expensive than equivalent systems within the NI PXI Platform.

<span class="mw-page-title-main">Pico Technology</span>

Pico Technology is a British manufacturer of high-precision PC-based oscilloscopes and automotive diagnostics equipment, founded in 1991. Their product range includes the PicoScope line of PC-based oscilloscopes, data loggers, automotive equipment, and most recently, handheld USB-based oscilloscopes. Since their inception in 1991, Pico Tech has been researching and developing PC-based oscilloscopes, when the market standard was analogue storage oscilloscopes. Pico Technology is one of two European scope manufacturers, and competes in the low to middle end of the instrumentation market.

<span class="mw-page-title-main">PicoScope (software)</span>

PicoScope is computer software for real-time signal acquisition of Pico Technology oscilloscopes. PicoScope is supported on Microsoft Windows, Mac OS X, Debian and Ubuntu platforms. PicoScope is primarily used to view and analyze real-time signals from PicoScope oscilloscopes and data loggers. PicoScope software enables analysis using FFT, a spectrum analyser, voltage-based triggers, and the ability to save/load waveforms to disk. PicoScope is compatible with parallel port oscilloscopes and the newer USB oscilloscopes.

References

  1. Ian Hickman (1997), Digital storage oscilloscopes, Newnes, ISBN   978-0-7506-2856-3
  2. Hughes electrical and electronic technology, Pearson Education, 2008, p. 953, ISBN   978-0-13-206011-0
  3. Charlie Sorrel (May 13, 2009), "DIY Oscilloscope is Awesomely Affordable", Wired
  4. Alan S. Morris (2001), Measurement and instrumentation principles, Butterworth-Heinemann, p. 211, ISBN   978-0-7506-5081-6
  5. Alan S. Morris, Reza Langari Measurement and Instrumentation: Theory and Application , Academic Press, 2011 ISBN   0123819628 page 180