Dual abelian variety

Last updated

In mathematics, a dual abelian variety can be defined from an abelian variety A, defined over a field k. A 1-dimensional abelian variety is an elliptic curve, and every elliptic curve is isomorphic to its dual, but this fails for higher-dimensional abelian varieties, so the concept of dual becomes more interesting in higher dimensions.

Contents

Definition

Let A be an abelian variety over a field k. We define to be the subgroup consisting of line bundles L such that , where are the multiplication and projection maps respectively. An element of is called a degree 0 line bundle on A. [1]

To A one then associates a dual abelian varietyAv (over the same field), which is the solution to the following moduli problem. A family of degree 0 line bundles parametrized by a k-variety T is defined to be a line bundle L on A×T such that

  1. for all , the restriction of L to A×{t} is a degree 0 line bundle,
  2. the restriction of L to {0}×T is a trivial line bundle (here 0 is the identity of A).

Then there is a variety Av and a line bundle , called the Poincaré bundle, which is a family of degree 0 line bundles parametrized by Av in the sense of the above definition. [2] Moreover, this family is universal, that is, to any family L parametrized by T is associated a unique morphism f: TAv so that L is isomorphic to the pullback of P along the morphism 1A×f: A×TA×Av. Applying this to the case when T is a point, we see that the points of Av correspond to line bundles of degree 0 on A, so there is a natural group operation on Av given by tensor product of line bundles, which makes it into an abelian variety.

In the language of representable functors one can state the above result as follows. The contravariant functor, which associates to each k-variety T the set of families of degree 0 line bundles parametrised by T and to each k-morphism f: TT' the mapping induced by the pullback with f, is representable. The universal element representing this functor is the pair (Av, P).

This association is a duality in the sense that there is a natural isomorphism between the double dual Avv and A (defined via the Poincaré bundle) and that it is contravariant functorial, i.e. it associates to all morphisms f: AB dual morphisms fv: BvAv in a compatible way. The n-torsion of an abelian variety and the n-torsion of its dual are dual to each other when n is coprime to the characteristic of the base. In general - for all n - the n-torsion group schemes of dual abelian varieties are Cartier duals of each other. This generalizes the Weil pairing for elliptic curves.

History

The theory was first put into a good form when K was the field of complex numbers. In that case there is a general form of duality between the Albanese variety of a complete variety V, and its Picard variety; this was realised, for definitions in terms of complex tori, as soon as André Weil had given a general definition of Albanese variety. For an abelian variety A, the Albanese variety is A itself, so the dual should be Pic0(A), the connected component of the identity element of what in contemporary terminology is the Picard scheme.

For the case of the Jacobian variety J of a compact Riemann surface C, the choice of a principal polarization of J gives rise to an identification of J with its own Picard variety. This in a sense is just a consequence of Abel's theorem. For general abelian varieties, still over the complex numbers, A is in the same isogeny class as its dual. An explicit isogeny can be constructed by use of an invertible sheaf L on A (i.e. in this case a holomorphic line bundle), when the subgroup

K(L)

of translations on L that take L into an isomorphic copy is itself finite. In that case, the quotient

A/K(L)

is isomorphic to the dual abelian variety Â.

This construction of  extends to any field K of characteristic zero. [3] In terms of this definition, the Poincaré bundle, a universal line bundle can be defined on

A×Â.

The construction when K has characteristic p uses scheme theory. The definition of K(L) has to be in terms of a group scheme that is a scheme-theoretic stabilizer, and the quotient taken is now a quotient by a subgroup scheme. [4]

The Dual Isogeny

Let be an isogeny of abelian varieties. (That is, is finite-to-one and surjective.) We will construct an isogeny using the functorial description of , which says that the data of a map is the same as giving a family of degree zero line bundles on , parametrized by .

To this end, consider the isogeny and where is the Poincare line bundle for . This is then the required family of degree zero line bundles on .

By the aforementioned functorial description, there is then a morphism so that . One can show using this description that this map is an isogeny of the same degree as , and that . [5]

Hence, we obtain a contravariant endofunctor on the category of abelian varieties which squares to the identity. This kind of functor is often called a dualizing functor. [6]

Mukai's Theorem

A celebrated theorem of Mukai [7] states that there is an isomorphism of derived categories , where denotes the bounded derived category of coherent sheaves on X. Historically, this was the first use of the Fourier-Mukai transform and shows that the bounded derived category cannot necessarily distinguish non-isomorphic varieties.

Recall that if X and Y are varieties, and is a complex of coherent sheaves, we define the Fourier-Mukai transform to be the composition , where p and q are the projections onto X and Y respectively.

Note that is flat and hence is exact on the level of coherent sheaves, and in applications is often a line bundle so one may usually leave the left derived functors underived in the above expression. Note also that one can analogously define a Fourier-Mukai transform using the same kernel, by just interchanging the projection maps in the formula.

The statement of Mukai's theorem is then as follows.

Theorem: Let A be an abelian variety of dimension g and the Poincare line bundle on . Then, , where is the inversion map, and is the shift functor. In particular, is an isomorphism. [8]

Notes

  1. Milne, James S. Abelian Varieties (PDF). pp. 35–36.
  2. Milne, James S. Abelian Varieties (PDF). p. 36.
  3. Mumford, Abelian Varieties, pp.74-80
  4. Mumford, Abelian Varieties, p.123 onwards
  5. Bhatt, Bhargav (2017). Abelian Varieties (PDF). p. 38.
  6. Eisenbud, David (1995). Commutative Algebra with a View Toward Algebraic Goemetry. Springer-Verlag. p. 521. ISBN   978-3-540-78122-6.
  7. Mukai, Shigeru (1981). "Duality between D(X) and D(\hat{X}) with its application to Picard sheaves". Nagoya Math. 81: 153–175.
  8. Bhatt, Bhargav (2017). Abelian Varieties (PDF). p. 43.

Related Research Articles

In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory. It allows the embedding of any locally small category into a category of functors defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

<span class="mw-page-title-main">Abelian variety</span> A projective algebraic variety that is also an algebraic group

In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for research on other topics in algebraic geometry and number theory.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper.

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.

In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds.

<span class="mw-page-title-main">Complex torus</span>

In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense. Here N must be the even number 2n, where n is the complex dimension of M.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In mathematics, Verdier duality is a cohomological duality in algebraic topology that generalizes Poincaré duality for manifolds. Verdier duality was introduced in 1965 by Jean-Louis Verdier as an analog for locally compact topological spaces of Alexander Grothendieck's theory of Poincaré duality in étale cohomology for schemes in algebraic geometry. It is thus one instance of Grothendieck's six operations formalism.

In algebraic geometry, a Fourier–Mukai transformΦK is a functor between derived categories of coherent sheaves D(X) → D(Y) for schemes X and Y, which is, in a sense, an integral transform along a kernel object K ∈ D(X×Y). Most natural functors, including basic ones like pushforwards and pullbacks, are of this type.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

This is a glossary of algebraic geometry.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

References

This article incorporates material from Dual isogeny on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.