Electric road

Last updated
Siemens eHighway overhead power lines on Bundesautobahn 5 in Germany A5 - Grafenhausen - Elektroautobahn - 2019-05-24 15-00-01.jpg
Siemens eHighway overhead power lines on Bundesautobahn 5 in Germany

An electric road, eroad, or electric road system (ERS) is a road which supplies electric power to vehicles travelling on it. Common implementations are overhead power lines above the road and ground-level power supply through conductive rails or inductive coils embedded in the road. Overhead power lines are limited to commercial vehicles while ground-level power can be used by any vehicle, which allows for public charging through power metering and billing systems. Of the three systems, ground-level conductive rails are estimated to be the most cost-effective. [1] :10–11

Contents

Korea was the first to implement an induction-based public electric road with a commercial bus line in 2013 after testing an experimental shuttle service in 2009, [2] :11–18 but it was shut down due to aging infrastructure amidst controversy over the continued public funding of the technology. Sweden has been performing assessments of various electric road technologies since 2013 under the Swedish Transport Administration electric road program. [3] :5 France began testing ground level power supply and inductive coil electric roads in 2023, and dismissed overhead lines as too expensive. [4]

Terms like "electric highway" may also be used to describe regular roads fitted with charging stations at regular intervals. [5]

Technology

TRL (formerly Transport Research Laboratory) lists three power delivery types for dynamic charging, or charging while the vehicle is in motion: overhead power lines, and ground level power through rail or induction. TRL lists overhead power as the most technologically mature solution which provides the highest levels of power, but the technology is unsuitable for non-commercial vehicles. Ground-level power is suitable for all vehicles, with rail being a mature solution with high transfer of power and easily accessible and inspected elements. Inductive charging delivers the least power and requires more roadside equipment than the alternatives. [2] :Appendix D

Business model

The Swedish Transport Administration anticipates that a national electric road network would require interfaces between several players: the electricity supplier, the power grid company, the vehicle manufacturer, the road owner, the electric road technology operator, the metering and billing provider, and the user of the electric road. The ownership model can vary: the power grid company may own the secondary roadside electrical substations that power the electric road infrastructure or they may be owned by other players, and the power reading and payment system may be owned by a player separate from the infrastructure operator. [3] :10–11

History

19th and 20th century

Irisbus Cristalis trolleybus using overhead power lines in Limoges, France, 2015 Irisbus Cristalis ETB 12 ndeg115 TCL Place Carnot.jpg
Irisbus Cristalis trolleybus using overhead power lines in Limoges, France, 2015

Overhead power lines have been used for road transport since at least 1882 in Berlin with Werner von Siemens's trolley buses. Over 300 trolley bus systems were in operation in 2018. Power to trolley buses is normally delivered using a pair of trolley poles positioned on top of the vehicle which extends to the overhead power lines. Implementations for highway vehicles have been developed in the late 2000s and 2010s [6] :15 but they are not suitable for non-commercial vehicles such as passenger cars. [2] :Appendix D

Ground-level power supply in the form of electrified rails is similar to overhead power lines in implementation. Instead of an arm or pole extending to overhead power lines, a mechanical arm extends from the bottom of the vehicle and aligns with a rail embedded in the road. The rail is then powered, and power is transferred through the arm to the vehicle. [6] :16 Ground-level power supply is considered aesthetically preferable to overhead wires [6] :20 and it is suited for all types of vehicles. [2] :24

The concept of a wireless ground-level power supply for vehicles was first patented in 1894. A static-charging system for shuttle buses was demonstrated in New Zealand in 1996. [6] :13 Similar systems have been implemented by Conductix-Wampfler and Bombardier PRIMOVE, which were later developed from static charging at bus stations to dynamic charging while driving. [2] :Appendix B

21st century

Development of electronic road systems has grown significantly from the late 1990s through the 2010s. [2] :12–22 Several companies have developed and implemented electric road systems in the 2010s. [2] :Appendix B

Korea

OLEV bus using ground-level wireless dynamic charging, 2016 SJT OLEV bus.jpg
OLEV bus using ground-level wireless dynamic charging, 2016

The Korea Advanced Institute of Science and Technology launched in 2009 a shuttle service with wireless dynamic charging through inductive coils embedded in the road. In 2013 OLEV launched a bus line in the city of Gumi. [2] :16 Another bus line was launched in Sejong in 2015, and two more bus lines were added in Gumi in 2016. [7] :4 All four wireless charging bus lines were shut down due to aging infrastructure. A new bus line was inaugurated in 2019 in Yuseong District. [8] Commercialization of the technology has not been successful, leading to controversy over the continued public funding of the technology in 2019. [9]

Sweden

Electric truck driving on a public road with Elways ground-level power supply, near Arlanda airport, 2019. Elways electric truck dynamic charging electric road eRoadArlanda project 2019-05-16.jpg
Electric truck driving on a public road with Elways ground-level power supply, near Arlanda airport, 2019.

The Swedish Transport Administration, Trafikverket, established an electric road program that studied the feasibility of an electric road national infrastructure for Sweden. The fact-finding program began in 2012 [10] and assessments of various electric road technologies in Sweden began in 2013. [11] :12 Trafikverket expected the final report of the Swedish electrification commission by the end of 2022, [12] but it was delayed until December 2024. [13]

The final report by CollERS, the Swedish-German research collaboration on electric road systems, advised Trafikverket to select a single ERS technology, suitable for heavy trucks, with several suppliers who use an existing standard, coordinated with German and French ERS decisions, not necessarily led by the European Union but with their coordination, utilizing an ERS-technology-neutral payment system. [14]

Trafikverket was expected to announce its chosen technology for electric roads by late 2023, [15] but due to procurement offers for the first permanent electric road on the E20 highway exceeding the project's budget, in 2023 Trafikverket began investigating cost-reducing measures in order to realize the project within its budget. [16] The E20 project was funded at 500-600 million SEK, or about 24-29 million SEK per two lane-kilometers. [17]

France

Bordeaux tramway with Alstom ground-level power supply, a technology that as of 2022 is being considered for electric roads. Bordeaux-tram-aps-near-Roustaing.jpg
Bordeaux tramway with Alstom ground-level power supply, a technology that as of 2022 is being considered for electric roads.

France plans to invest 30 to 40 billion euro by 2035 in an electric road system spanning 8,800 kilometers that recharges electric cars, buses and trucks while driving. Two projects for assessment of electric road technologies were announced in 2023. Three technologies are being considered: ground-level power supply, inductive charging, and overhead lines. Ground-level power supply technologies, provided by Alstom, Elonroad, and others, are considered the most likely candidate for electric roads. Inductive charging is not considered a mature technology as it delivers the least power, loses 20%-25% of the supplied power when installed on trucks, and its health effects have yet to be documented. Overhead lines is the most mature technology, but the catenaries and overhead wires pose safety and maintenance issues, [18] and motorway companies find overhead lines too expensive. [4]

Trials

France constructed a test track for Qualcomm dynamic wireless charging of vehicles, and concluded testing in 2018. [19] :9

Alstom has developed a ground-level power supply (alimentation par le sol - APS) system for use with buses and other vehicles. [20] The system has been tested for compatibility with snow plows and for safety under exposure to snow, ice, salting, and saturated brine. [21] Alstom will trial its electric road system (ERS) on the public road RN205 [22] in the Rhône-Alpes region between 2024 and 2027. [23]

Vinci will test two electric road systems (ERS) from 2023 to 2027. Both technologies will initially be tested in laboratory conditions, and upon meeting the test requirements they will be installed along 2 kilometers each on the A10 autoroute south of Paris. Wireless ERS by Electreon will be tested for durability under highway traffic, and will attempt to reach 200kW of power delivery per truck using multiple receivers. Rail ERS by Elonroad, which supplies 350kW of power per receiver, will be tested for skid effects on motorcycles. Both systems will be interoperable with cars, buses, and trucks. [24]

Other countries

Japan

Japan tested an electric road system on a public road with Honda in 2018. [19] :10

Germany

Bombardier conducted a dynamic wireless power transfer trial in Mannheim, Germany, in 2013. [19] :9 Germany launched an overhead power line electric road in May 2019 on a 10 km (6.2 mi) section of Bundesautobahn 5 south of Frankfurt. The project is operated by the ELISA consortium which includes Siemens and Scania. [25] Results from the trial were mixed, finding high costs and difficult maintenance for the overhead lines, leading the Ministry of Transport to end its financial support of the trial. [26]

United Kingdom

Highways England began a dynamic wireless power transfer project in 2015 [27] but the project was cancelled in early 2016 for budgetary reasons. [28] Another dynamic wireless power transfer feasibility study, dubbed DynaCoV, began in 2021 and issued its final report in 2022. The study found that dynamic wireless charging is 10 times more expensive than conductive charging and is not financially feasible. [29] [30] The company that participated in the study is set to pave a demonstration wireless charging road in 2024. [31]

United States

In May 2023, ENRX won a contract to build a one-mile wireless charging system capable of charging at up to 200 kW on State Road 516 near Orlando, Florida. [32] In late November 2023, Detroit, Michigan opened a quarter-mile Electreon charging section of 14th St. in Michigan Central, its mobility innovation area. [33]

Related Research Articles

<span class="mw-page-title-main">Transport in France</span> Overview of the transport in France

Transportation in France relies on one of the densest networks in the world with 146 km of road and 6.2 km of rail lines per 100 km2. It is built as a web with Paris at its center. Rail, road, air and water are all widely developed forms of transportation in France.

<span class="mw-page-title-main">Electric vehicle</span> Vehicle propelled by one or more electric motors

An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. The vehicle can be powered by a collector system, with electricity from extravehicular sources, or can be powered autonomously by a battery or by converting fuel to electricity using a generator or fuel cells. EVs include road and rail vehicles, electric boats and underwater vessels, electric aircraft and electric spacecraft.

<span class="mw-page-title-main">Wireless power transfer</span> Transmission of electrical energy without wires as a physical link

Wireless power transfer (WPT), wireless power transmission, wireless energy transmission (WET), or electromagnetic power transfer is the transmission of electrical energy without wires as a physical link. In a wireless power transmission system, an electrically powered transmitter device generates a time-varying electromagnetic field that transmits power across space to a receiver device; the receiver device extracts power from the field and supplies it to an electrical load. The technology of wireless power transmission can eliminate the use of the wires and batteries, thereby increasing the mobility, convenience, and safety of an electronic device for all users. Wireless power transfer is useful to power electrical devices where interconnecting wires are inconvenient, hazardous, or are not possible.

<span class="mw-page-title-main">Ground-level power supply</span> System for powering electric vehicles

Ground-level power supply, also known as surface current collection or, in French, alimentation par le sol, is a concept and group of technologies whereby electric vehicles collect electric power at ground level from individually-powered segments instead of the more common overhead lines. Ground-level power supply was developed for aesthetic reasons, to avoid the presence of overhead lines in city centres.

<span class="mw-page-title-main">Electric bus</span> Bus powered by electricity

An electric bus is a bus that is propelled using electric motors, as opposed to a conventional internal combustion engine. Electric buses can store the needed electrical energy on board, or be fed mains electricity continuously from an external source such as overhead lines. The majority of buses using on-board energy storage are battery electric buses, where the electric motor obtains energy from an onboard battery pack, although examples of other storage modes do exist, such as the gyrobus that uses flywheel energy storage. When electricity is not stored on board, it is supplied by contact with outside power supplies, for example, via a current collector, or with a ground-level power supply, or through inductive charging.

<span class="mw-page-title-main">Inductive charging</span> Type of wireless power transfer

Inductive charging is a type of wireless power transfer. It uses electromagnetic induction to provide electricity to portable devices. Inductive charging is also used in vehicles, power tools, electric toothbrushes, and medical devices. The portable equipment can be placed near a charging station or inductive pad without needing to be precisely aligned or make electrical contact with a dock or plug.

<span class="mw-page-title-main">Battery electric bus</span> Electric bus which obtains energy from on-board batteries

A battery electric bus is an electric bus that is driven by an electric motor and obtains energy from on-board batteries. Many trolleybuses use batteries as an auxiliary or emergency power source.

<span class="mw-page-title-main">Charging station</span> Installation for charging electric vehicles

A charging station, also known as a charge point, chargepoint, or electric vehicle supply equipment (EVSE), is a power supply device that supplies electrical power for recharging plug-in electric vehicles.

<span class="mw-page-title-main">Trams in France</span>

Trams in France date from 1837 when a 15 km steam tram line connected Montrond-les-Bains and Montbrison in the Loire. With the development of electric trams at the end of the 19th century, networks proliferated in French cities over a period of 15 years. Although nearly all of the country's tram systems were replaced by bus services in the 1930s or shortly after the Second World War, France is now in the forefront of the revival of tramways and light rail systems around the globe. Only tram lines in Lille and Saint-Étienne have operated continuously since the 19th century; the Marseille tramway system ran continuously until 2004 and only closed then for 3 years for extensive refurbishment into a modern tram network. Since the opening of the Nantes tramway in 1985, more than twenty towns and cities across France have built new tram lines. As of 2024, there are 28 operational tram networks in France, with 3 more planned. France is also home to Alstom, a leading tram manufacturer.

Smart highways and smart roads are highways and roads that incorporate electronic technologies. They are used to improve the operation of connected and autonomous vehicles (CAVs), for traffic lights and street lighting, and for monitoring the condition of the road, as well as traffic levels and the speed of vehicles.

<span class="mw-page-title-main">Resonant inductive coupling</span> Phenomenon with inductive coupling

Resonant inductive coupling or magnetic phase synchronous coupling is a phenomenon with inductive coupling in which the coupling becomes stronger when the "secondary" (load-bearing) side of the loosely coupled coil resonates. A resonant transformer of this type is often used in analog circuitry as a bandpass filter. Resonant inductive coupling is also used in wireless power systems for portable computers, phones, and vehicles.

Plugless Power is a family of Electric Vehicle Supply Equipment (EVSE) products manufactured by Plugless Power, Inc. that enable wireless (inductive) charging for electric vehicles (WCEV). The Plugless Power EVSE wirelessly delivers electrical power to the on-board EV battery charger using electromagnetic induction without a physical connection (cable) to the vehicle. An EV equipped with a Plugless Vehicle Adapter can be charged by parking it over an inductive Plugless Parking Pad. The active step of plugging a cord into the vehicle is eliminated.

<span class="mw-page-title-main">Capacitor electric vehicle</span>

A capacitor electric vehicle is a vehicle that uses supercapacitors to store electricity.

<span class="mw-page-title-main">Online electric vehicle</span> Type of electric vehicle

On-Line Electric Vehicle or OLEV is an electric vehicle system developed by KAIST, the Korea Advanced Institute of Science and Technology, which charges electric vehicles wirelessly while moving using inductive charging. Segments composed of coils buried in the road transfer energy to a receiver or pickup that is mounted on the underside of the electric vehicle, which powers the vehicle and charges its battery.

Road powered electric vehicles (RPEV) collect any form of potential energy from the road surface to supply electricity to locomotive motors and ancillary equipment within the vehicle.

<span class="mw-page-title-main">Conductive charging</span>

Conductive charging is conductive power transfer that replaces the conductive wires between the charger and the charged device with conductive contacts. Charging infrastructure in the form of a board or rail delivers the power to a charging device equipped with an appropriate receiver, or pickup. When the infrastructure recognizes a valid receiver it powers on, and power is transferred.

SAE J2954 is a standard for wireless power transfer (WPT) for electric vehicles led by SAE International. It defines three classes of charging speed, WPT 1, 2 and 3, at a maximum of 3.7 kW, 7.7 kW and 11 kW, respectively. This makes it comparable to medium-speed wired charging standards like the common SAE J1772 system. A much more powerful WPT9 is being defined in J2954/2 for 500 kW charging for heavy-duty vehicles which have the room necessary to mount the larger induction plate.

<span class="mw-page-title-main">SAE J3105</span>

SAE J3105 is a recommended practice for automated connection devices (ACD) that mate chargers with battery electric buses and heavy-duty vehicles. The practice is maintained by the SAE International with the formal title "Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Recommended Practice", and was first issued in January 2020. It covers the general physical, electrical, functional, testing, and performance requirements for automated conductive DC power transfer systems intended for heavy duty vehicles, focusing primarily on transit buses.

<span class="mw-page-title-main">Alstom APS</span> Alternative method of third rail electrical pick-up for street trams

Alstom APS, also known as Alimentation par Sol or Alimentation Par le Sol, is a form of ground-level power supply for street trams and, potentially, other vehicles. APS was developed by Innorail, a subsidiary of Spie Enertrans, but was sold to Alstom when Spie was acquired by Amec. It was originally created for the Bordeaux tramway, which was constructed from 2000 and opened in 2003. From 2011, the technology has been used in a number of other cities around the world.

The Swedish Transport Administration electric road program or Swedish Transport Administration Electrification Program is a program involving the assessment, planning, and implementation of an electric road national infrastructure for Sweden by Trafikverket, the Swedish Transport Administration.

References

  1. Francisco J. Márquez-Fernández (May 20, 2019), Power conversion challenges with an all-electric land transport system (PDF), Swedish Electromobility Centre
  2. 1 2 3 4 5 6 7 8 D Bateman; et al. (October 8, 2018), Electric Road Systems: a solution for the future (PDF), TRL, archived from the original (PDF) on August 3, 2020, retrieved November 19, 2019
  3. 1 2 Björn Hasselgren (October 9, 2019), Swedish ERS - program background, current analysis phase and plans ahead (PDF), Swedish Transport Administration
  4. 1 2 Marc Fressoz (May 9, 2024), "Les autoroutiers divisés sur les solutions à mettre en place pour faire rouler des camions électriques", L'USINENOUVELLE.com
  5. "Western Australia building country's longest 'electric highway'". 19 August 2021.
  6. 1 2 3 4 Electric road systems: a solution for the future? (PDF), World Road Association, 2018, ISBN   978-2-84060-496-9
  7. Smart Wireless Power Transfer Technology (PDF), Korea Advanced Institute of Science and Technology
  8. 권명관 (July 22, 2021), "[모빌리티 인사이트] 도로 위만 달려도 전기차를 충전합니다, 일렉트리온", The Dong-a Ilbo
  9. Kwak Yeon-soo (24 March 2019). "ICT minister nominee accused of wasting research money". The Korea Times .
  10. "Test och demonstration - resultat, erfarenheter, lärande och reflektioner", Region Gävleborg, March 24, 2023
  11. Swedish Transport Administration (November 29, 2017), National roadmap for electric road systems (PDF), archived from the original (PDF) on November 24, 2020
  12. Kenneth Natanaelsson (March 26, 2021), Elektrifiering av transportsystem (PDF), Trafikverket, archived from the original (PDF) on March 2, 2022
  13. Energimyndigheten (Swedish Energy Agency) (January 2023), Delrapport inom uppdraget om handlingsprogram för laddinfrastruktur och tankinfrastruktur för vätgas, p. 20
  14. Matts Andersson; et al. (January 31, 202), Choosing ERS technology for Europe (PDF), WSP Sverige AB, archived from the original (PDF) on March 10, 2024
  15. Per Mattsson (January 18, 2023), "40 experter: Så blir det nya mobilitetsåret", Dagens industri
  16. "Vi avbryter upphandlingen för Sverige första permanenta elväg", Trafikverket, August 28, 2023
  17. Johan Kristensson (September 5, 2023), "Skjuts upp – därför skenade kostnaden för Sveriges första permanenta elväg", NyTeknik
  18. Laurent Miguet (April 28, 2022), "Sur les routes de la mobilité électrique", Le Moniteur
  19. 1 2 3 Martin G. H. Gustavsson (April 2, 2019), Overview of ERS concepts and complementary technologies (PDF), Swedish-German research collaboration on Electric Road Systems
  20. "Alstom transfers tram power supply technology to buses". Rail Insider. 26 September 2019. Archived from the original on 29 November 2020. Retrieved 29 November 2020.
  21. Patrick Dupart (February 11, 2022), Compatibility of an in-road Electric Road System with winter service operations (PDF), Alstom, PIARC
  22. "Les aides proposées par ATMB à ses clients légers et lourds pour la décarbonation des transports", ATMB, June 30, 2023
  23. Jean-Philippe Pastre (June 30, 2023), "L'APS d'Alstom bientôt testé sur les routes", TRM24
  24. Léna Corot (August 30, 2023), "Vinci teste la recharge par induction et par rail sur autoroute", L'USINENOUVELLE.com
  25. Tim Wynne-Jones (October 2019), Third Rail (PDF), Institute of Road Transport Engineers
  26. Bilanz E-Highway: Lastwagen können Hälfte an CO2 sparen, DPA, March 1, 2024
  27. Feasibility study - powering electric vehicles on England's major roads, Highways England, August 2015
  28. Ed Targett (September 20, 2016), Who Killed the Electric Highway?
  29. Steven Pinkerton-Clark (June 22, 2022), DynaCoV - Dynamic Charging of Vehicles - Project closedown report
  30. Elaine Meskhi (December 2021), DynaCoV - Final Feasibility Report on DWPT Deployment within the UK
  31. Chris Randall (April 29, 2024), "Wireless charging project to take off in Coventry", elecdrive.com
  32. "ENRX wins $13.3 million contract to supply in-motion EV charging technology on Florida highway". May 2023.
  33. "MDOT, City of Detroit and Electreon unveil nation's first public EV-charging roadway at Michigan Central". City of Detroit. 2023-11-29. Retrieved 2023-12-01.