Emergent Universe

Last updated

An emergent Universe scenario is a cosmological model that features the Universe being in a low-entropy "dormant" state before the Big Bang or the beginning of the cosmic inflation. Several such scenarios have been proposed in the literature.

Contents

"Cosmic egg" scenarios

A popular version proposed by George Ellis and others involves the Universe shaped like a 3-dimensional sphere (or another compact manifold) until a rolling scalar field begins inflating it. These models are notable as potentially avoiding both a Big Bang singularity and a quantum gravity era. [1]

Criticism

This proposal has been criticised by Vilenkin and Mithani [2] and on different grounds by Aguirre and Kehayias [3] as inconsistent if quantum-mechanical effects are taken into account.

Related Research Articles

<span class="mw-page-title-main">Big Bang</span> Physical theory describing the expansion of the universe

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. The Big Bang theory was inspired by the discovery of the expanding Universe by Edwin Hubble. It was first proposed in 1927 by Roman Catholic priest and physicist Georges Lemaître. Lemaître reasoned that if we go back in time, there must be fewer and fewer matter, until all the energy of the universe is packed in a unique quantum. Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The overall uniformity of the universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments. However, physics currently lacks a widely accepted theory of quantum gravity that can successfully model the earliest conditions of the Big Bang.

<span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch is believed to have lasted from 10−36 seconds to between 10−33 and 10−32 seconds after the Big Bang. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old.

In physics, quintessence is a hypothetical form of dark energy, more precisely a scalar field, postulated as an explanation of the observation of an accelerating rate of expansion of the universe. The first example of this scenario was proposed by Ratra and Peebles (1988) and Wetterich (1988). The concept was expanded to more general types of time-varying dark energy, and the term "quintessence" was first introduced in a 1998 paper by Robert R. Caldwell, Rahul Dave and Paul Steinhardt. It has been proposed by some physicists to be a fifth fundamental force. Quintessence differs from the cosmological constant explanation of dark energy in that it is dynamic; that is, it changes over time, unlike the cosmological constant which, by definition, does not change. Quintessence can be either attractive or repulsive depending on the ratio of its kinetic and potential energy. Those working with this postulate believe that quintessence became repulsive about ten billion years ago, about 3.5 billion years after the Big Bang.

The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs. Several possible futures have been predicted by different scientific hypotheses, including that the universe might have existed for a finite and infinite duration, or towards explaining the manner and circumstances of its beginning.

<span class="mw-page-title-main">Big Crunch</span> Theoretical scenario for the ultimate fate of the universe

The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach zero, an event potentially followed by a reformation of the universe starting with another Big Bang. The vast majority of evidence indicates that this hypothesis is not correct. Instead, astronomical observations show that the expansion of the universe is accelerating rather than being slowed by gravity, suggesting that a Big Chill is more likely. However, there are new theories that suggest that a "Big Crunch-style" event could happen by the way of a dark energy fluctuation; however, this is still being debated amongst scientists.

The Big Bounce hypothesis is a cosmological model for the origin of the known universe. It was originally suggested as a phase of the cyclic model or oscillatory universe interpretation of the Big Bang, where the first cosmological event was the result of the collapse of a previous universe. It receded from serious consideration in the early 1980s after inflation theory emerged as a solution to the horizon problem, which had arisen from advances in observations revealing the large-scale structure of the universe.

Brane cosmology refers to several theories in particle physics and cosmology related to string theory, superstring theory and M-theory.

In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation one of several alternatives to general relativity. The theory was first proposed by Élie Cartan in 1922.

<span class="mw-page-title-main">Quantum cosmology</span> Attempts to develop a quantum mechanical theory of cosmology

Quantum cosmology is the attempt in theoretical physics to develop a quantum theory of the universe. This approach attempts to answer open questions of classical physical cosmology, particularly those related to the first phases of the universe.

In string theory, the string theory landscape is the collection of possible false vacua, together comprising a collective "landscape" of choices of parameters governing compactifications.

Eternal inflation is a hypothetical inflationary universe model, which is itself an outgrowth or extension of the Big Bang theory.

Loop quantum cosmology (LQC) is a finite, symmetry-reduced model of loop quantum gravity (LQG) that predicts a "quantum bridge" between contracting and expanding cosmological branches.

In physical cosmology, fractal cosmology is a set of minority cosmological theories which state that the distribution of matter in the Universe, or the structure of the universe itself, is a fractal across a wide range of scales. More generally, it relates to the usage or appearance of fractals in the study of the universe and matter. A central issue in this field is the fractal dimension of the universe or of matter distribution within it, when measured at very large or very small scales.

The minisuperspace in physics, especially in theories of quantum gravity, is an approximation of the otherwise infinite-dimensional phase space of a field theory. The phase space is reduced by considering the largest wavelength modes to be of the order of the size of the universe when studying cosmological models and removing all larger modes. The validity of this approximation holds as long as the adiabatic approximation holds.

A black hole cosmology is a cosmological model in which the observable universe is the interior of a black hole. Such models were originally proposed by theoretical physicist Raj Pathria, and concurrently by mathematician I. J. Good.

The Borde–Guth–Vilenkin theorem, or the BGV theorem, is a theorem in physical cosmology which deduces that any universe that has, on average, been expanding throughout its history cannot be infinite in the past but must have a past spacetime boundary. The theorem does not assume any specific mass content of the universe and it does not require gravity to be described by Einstein field equations. It is named after the authors Arvind Borde, Alan Guth and Alexander Vilenkin, who developed its mathematical formulation in 2003. The BGV theorem is also popular outside physics, especially in religious and philosophical debates.

Hermann Nicolai is a German theoretical physicist and director emeritus at the Max Planck Institute for Gravitational Physics in Potsdam-Golm.

GrigoryEfimovich Volovik is a Russian theoretical physicist, who specializes in condensed matter physics. He is known for the Volovik effect.

References

  1. Ellis, George; Maartens, Roy (January 7, 2004). "The Emergent Universe: inflationary cosmology with no singularity". Classical and Quantum Gravity. 21 (1): 223–232. arXiv: gr-qc/0211082 . Bibcode:2004CQGra..21..223E. doi:10.1088/0264-9381/21/1/015. S2CID   250819315.
  2. Mithani, Audrey T.; Vilenkin, Alexander (January 10, 2012). "Collapse of simple harmonic universe". Journal of Cosmology and Astroparticle Physics. 2012 (1): 28. arXiv: 1110.4096 . Bibcode:2012JCAP...01..028M. doi:10.1088/1475-7516/2012/01/028. S2CID   250740037.
  3. Aguirre, Anthony; Kehayias, John (November 7, 2013). "Quantum Instability of the Emergent Universe". Physical Review D. 88 (10): 103504. arXiv: 1306.3232 . Bibcode:2013PhRvD..88j3504A. doi:10.1103/PhysRevD.88.103504. S2CID   118348623.