Empty semigroup

Last updated

In mathematics, a semigroup with no elements (the empty semigroup) is a semigroup in which the underlying set is the empty set. Many authors do not admit the existence of such a semigroup. For them a semigroup is by definition a non-empty set together with an associative binary operation. [1] [2] However not all authors insist on the underlying set of a semigroup being non-empty. [3] One can logically define a semigroup in which the underlying set S is empty. The binary operation in the semigroup is the empty function from S × S to S. This operation vacuously satisfies the closure and associativity axioms of a semigroup. Not excluding the empty semigroup simplifies certain results on semigroups. For example, the result that the intersection of two subsemigroups of a semigroup T is a subsemigroup of T becomes valid even when the intersection is empty.

When a semigroup is defined to have additional structure, the issue may not arise. For example, the definition of a monoid requires an identity element, which rules out the empty semigroup as a monoid.

In category theory, the empty semigroup is always admitted. It is the unique initial object of the category of semigroups.

A semigroup with no elements is an inverse semigroup, since the necessary condition is vacuously satisfied.

See also

Related Research Articles

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

<span class="mw-page-title-main">Monoid</span> Algebraic structure with an associative operation and an identity element

In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.

<span class="mw-page-title-main">Semigroup</span> Algebraic structure consisting of a set with an associative binary operation

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.

In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.

In abstract algebra, a magma, binar or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed.

In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set A is usually denoted A. The free semigroup on A is the subsemigroup of A containing all elements except the empty string. It is usually denoted A+.

In mathematics, a join-semilattice is a partially ordered set that has a join for any nonempty finite subset. Dually, a meet-semilattice is a partially ordered set which has a meet for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.

In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are acting as transformations of the set. From an algebraic perspective, a semigroup action is a generalization of the notion of a group action in group theory. From the computer science point of view, semigroup actions are closely related to automata: the set models the state of the automaton and the action models transformations of that state in response to inputs.

In mathematics, the bicyclic semigroup is an algebraic object important for the structure theory of semigroups. Although it is in fact a monoid, it is usually referred to as simply a semigroup. It is perhaps most easily understood as the syntactic monoid describing the Dyck language of balanced pairs of parentheses. Thus, it finds common applications in combinatorics, such as describing binary trees and associative algebras.

In group theory, an inverse semigroupS is a semigroup in which every element x in S has a unique inversey in S in the sense that x = xyx and y = yxy, i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries.

In mathematics, there are many types of algebraic structures which are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a collection of axioms.

In mathematics, an absorbing element is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero element because there is no risk of confusion with other notions of zero, with the notable exception: under additive notation zero may, quite naturally, denote the neutral element of a monoid. In this article "zero element" and "absorbing element" are synonymous.

In algebra, a transformation semigroup is a collection of transformations that is closed under function composition. If it includes the identity function, it is a monoid, called a transformationmonoid. This is the semigroup analogue of a permutation group.

In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively.

In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups.

In mathematics, a null semigroup is a semigroup with an absorbing element, called zero, in which the product of any two elements is zero. If every element of a semigroup is a left zero then the semigroup is called a left zero semigroup; a right zero semigroup is defined analogously. According to Clifford and Preston, "In spite of their triviality, these semigroups arise naturally in a number of investigations."

In mathematics, a semigroup with two elements is a semigroup for which the cardinality of the underlying set is two. There are exactly five distinct nonisomorphic semigroups having two elements:

In abstract algebra, a semigroup with three elements is an object consisting of three elements and an associative operation defined on them. The basic example would be the three integers 0, 1, and −1, together with the operation of multiplication. Multiplication of integers is associative, and the product of any two of these three integers is again one of these three integers.

In mathematics, and more precisely in semigroup theory, a variety of finite semigroups is a class of semigroups having some nice algebraic properties. Those classes can be defined in two distinct ways, using either algebraic notions or topological notions. Varieties of finite monoids, varieties of finite ordered semigroups and varieties of finite ordered monoids are defined similarly.

References

  1. A. H. Clifford, G. B. Preston (1964). The Algebraic Theory of Semigroups Vol. I (Second Edition). American Mathematical Society. ISBN   978-0-8218-0272-4
  2. Howie, J. M. (1976). An Introduction to Semigroup Theory. L.M.S.Monographs. Vol. 7. Academic Press. pp. 2–3
  3. P. A. Grillet (1995). Semigroups. CRC Press. ISBN   978-0-8247-9662-4 pp. 3–4