Euler's identity

Last updated

In mathematics, Euler's identity [note 1] (also known as Euler's equation) is the equality

Contents

where

is Euler's number, the base of natural logarithms,
is the imaginary unit, which by definition satisfies , and
is pi, the ratio of the circumference of a circle to its diameter.

Euler's identity is named after the Swiss mathematician Leonhard Euler. It is a special case of Euler's formula when evaluated for . Euler's identity is considered to be an exemplar of mathematical beauty as it shows a profound connection between the most fundamental numbers in mathematics. In addition, it is directly used in a proof [3] [4] that π is transcendental, which implies the impossibility of squaring the circle.

Mathematical beauty

Euler's identity is often cited as an example of deep mathematical beauty. [5] Three of the basic arithmetic operations occur exactly once each: addition, multiplication, and exponentiation. The identity also links five fundamental mathematical constants: [6]

The equation is often given in the form of an expression set equal to zero, which is common practice in several areas of mathematics.

Stanford University mathematics professor Keith Devlin has said, "like a Shakespearean sonnet that captures the very essence of love, or a painting that brings out the beauty of the human form that is far more than just skin deep, Euler's equation reaches down into the very depths of existence". [7] And Paul Nahin, a professor emeritus at the University of New Hampshire, who has written a book dedicated to Euler's formula and its applications in Fourier analysis, describes Euler's identity as being "of exquisite beauty". [8]

Mathematics writer Constance Reid has opined that Euler's identity is "the most famous formula in all mathematics". [9] And Benjamin Peirce, a 19th-century American philosopher, mathematician, and professor at Harvard University, after proving Euler's identity during a lecture, stated that the identity "is absolutely paradoxical; we cannot understand it, and we don't know what it means, but we have proved it, and therefore we know it must be the truth". [10]

A poll of readers conducted by The Mathematical Intelligencer in 1990 named Euler's identity as the "most beautiful theorem in mathematics". [11] In another poll of readers that was conducted by Physics World in 2004, Euler's identity tied with Maxwell's equations (of electromagnetism) as the "greatest equation ever". [12]

At least three books in popular mathematics have been published about Euler's identity:

Explanations

Imaginary exponents

In this animation N takes various increasing values from 1 to 100. The computation of (1 +
.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}
ip/N) is displayed as the combined effect of N repeated multiplications in the complex plane, with the final point being the actual value of (1 +
ip/N). It can be seen that as N gets larger (1 +
ip/N) approaches a limit of -1. ExpIPi.gif
In this animation N takes various increasing values from 1 to 100. The computation of (1 + /N) is displayed as the combined effect of N repeated multiplications in the complex plane, with the final point being the actual value of (1 + /N). It can be seen that as N gets larger (1 + /N) approaches a limit of −1.

Fundamentally, Euler's identity asserts that is equal to −1. The expression is a special case of the expression , where z is any complex number. In general, is defined for complex z by extending one of the definitions of the exponential function from real exponents to complex exponents. For example, one common definition is:

Euler's identity therefore states that the limit, as n approaches infinity, of is equal to −1. This limit is illustrated in the animation to the right.

Euler's formula for a general angle Euler's formula.svg
Euler's formula for a general angle

Euler's identity is a special case of Euler's formula, which states that for any real number x,

where the inputs of the trigonometric functions sine and cosine are given in radians.

In particular, when x = π,

Since

and

it follows that

which yields Euler's identity:

Geometric interpretation

Any complex number can be represented by the point on the complex plane. This point can also be represented in polar coordinates as , where r is the absolute value of z (distance from the origin), and is the argument of z (angle counterclockwise from the positive x-axis). By the definitions of sine and cosine, this point has cartesian coordinates of , implying that . According to Euler's formula, this is equivalent to saying .

Euler's identity says that . Since is for r = 1 and , this can be interpreted as a fact about the number −1 on the complex plane: its distance from the origin is 1, and its angle from the positive x-axis is radians.

Additionally, when any complex number z is multiplied by , it has the effect of rotating z counterclockwise by an angle of on the complex plane. Since multiplication by −1 reflects a point across the origin, Euler's identity can be interpreted as saying that rotating any point radians around the origin has the same effect as reflecting the point across the origin. Similarly, setting equal to yields the related equation which can be interpreted as saying that rotating any point by one turn around the origin returns it to its original position.

Generalizations

Euler's identity is also a special case of the more general identity that the nth roots of unity, for n > 1, add up to 0:

Euler's identity is the case where n = 2.

A similar identity also applies to quaternion exponential: let {i, j, k} be the basis quaternions; then,

More generally, let q be a quaternion with a zero real part and a norm equal to 1; that is, with Then one has

The same formula applies to octonions, with a zero real part and a norm equal to 1. These formulas are a direct generalization of Euler's identity, since and are the only complex numbers with a zero real part and a norm (absolute value) equal to 1.

History

While Euler's identity is a direct result of Euler's formula, published in his monumental work of mathematical analysis in 1748, Introductio in analysin infinitorum , [16] it is questionable whether the particular concept of linking five fundamental constants in a compact form can be attributed to Euler himself, as he may never have expressed it. [17]

Robin Wilson states the following. [18]

We've seen how it [Euler's identity] can easily be deduced from results of Johann Bernoulli and Roger Cotes, but that neither of them seem to have done so. Even Euler does not seem to have written it down explicitly – and certainly it doesn't appear in any of his publications – though he must surely have realized that it follows immediately from his identity [i.e. Euler's formula], eix = cos x + i sin x. Moreover, it seems to be unknown who first stated the result explicitly....

See also

Notes

  1. The term "Euler's identity" (or "Euler identity") is also used elsewhere to refer to other concepts, including the related general formula eix = cos x + i sin x, [1] and the Euler product formula. [2] See also List of things named after Leonhard Euler.

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.

<span class="mw-page-title-main">Euler's formula</span> Complex exponential in terms of sine and cosine

Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

In mathematics, de Moivre's formula states that for any real number x and integer n it holds that

<span class="mw-page-title-main">Exponentiation</span> Arithmetic operation

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

<span class="mw-page-title-main">Beta function</span> Mathematical function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

<span class="mw-page-title-main">Circle group</span> Lie group of complex numbers of unit modulus; topologically a circle

In mathematics, the circle group, denoted by or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers

The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

<span class="mw-page-title-main">Scherk surface</span>

In mathematics, a Scherk surface is an example of a minimal surface. Scherk described two complete embedded minimal surfaces in 1834; his first surface is a doubly periodic surface, his second surface is singly periodic. They were the third non-trivial examples of minimal surfaces. The two surfaces are conjugates of each other.

<span class="mw-page-title-main">Unit circle</span> Circle with radius of one

In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as S1 because it is a one-dimensional unit n-sphere.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

References

  1. Dunham, 1999, p. xxiv.
  2. Stepanov, S.A. (2001) [1994], "Euler identity", Encyclopedia of Mathematics , EMS Press
  3. Milla, Lorenz (2020), The Transcendence of π and the Squaring of the Circle, arXiv: 2003.14035
  4. Hines, Robert. "e is transcendental" (PDF). University of Colorado. Archived (PDF) from the original on 2021-06-23.
  5. Gallagher, James (13 February 2014). "Mathematics: Why the brain sees maths as beauty". BBC News Online . Retrieved 26 December 2017.
  6. Paulos, 1992, p. 117.
  7. Nahin, 2006, p. 1.
  8. Nahin, 2006, p. xxxii.
  9. Reid, chapter e.
  10. Maor, p. 160, and Kasner & Newman, p. 103–104.
  11. Wells, 1990.
  12. Crease, 2004.
  13. Nahin, Paul (2011). Dr. Euler's fabulous formula : cures many mathematical ills. Princeton University Press. ISBN   978-0691118222.
  14. Stipp, David (2017). A Most Elegant Equation : Euler's Formula and the Beauty of Mathematics (First ed.). Basic Books. ISBN   978-0465093779.
  15. Wilson, Robin (2018). Euler's pioneering equation : the most beautiful theorem in mathematics. Oxford: Oxford University Press. ISBN   978-0198794936.
  16. Conway & Guy, p. 254–255.
  17. Sandifer, p. 4.
  18. Wilson, p. 151-152.

Sources