Everysight

Last updated

Everysight Ltd.
Company type Private company
Industry Smartglasses
FoundedFebruary 25, 2014;9 years ago (2014-02-25)
Headquarters,
Website https://everysight.com/

Everysight Ltd. is an Israeli technology company established in 2014 as a spinoff of Elbit Systems. Everysight develops smartglasses based on augmented reality technology for the civilian market. The company's main product is Raptor smartglasses. [1]

Contents


History

Early years

Everysight's first generation projection system was developed in 2004. This version was a small micro-HUD, [2] which used a staged beam combiner integrated within a panel window device located in front of the user's eye. This allowed the user to view the surroundings while looking at real-time information, projected from the combiners, and perceived as an augmented reality graphic layer floating in front of the user. An eMagin OLED display component enabled users to view the projected information even in full sunlight.[ citation needed ]

The display system was connected by cable to a Sony U subnotebook running Windows XP, which interfaced wirelessly with a variety of ANT+ sensors while running custom software designed for cycling and skiing.[ citation needed ]

2006–2007 – 2nd generation

The team developed the second generation of smartglasses based on the free space principle, with an off-axis non-forming exit pupil, [3] whereby the glasses' lenses themselves are used as a beam combiner in such a way that the projected light can return to the user's eye. Other than the lens itself, there is no additional element in front of the eye, preventing sight obstruction and increasing eye safety. Additionally, the lenses featured a spherical structure delivering built-in correction for optical distortions. The optical solution combined the use of a mini OLED display with significantly low power consumption. The optical solution proved to perform with extremely high efficiency while enabling a high-contrast display that remained visible even in full sunlight. The model was powered by a specially adapted, PDA-like computer running Windows CE, which was connected to the glasses by cable and ran various software apps. The computer included a wireless interface, which enabled connection to a cellular network via smartphone, as well as a wide range of sensors (such as GPS, heart rate belt, speed sensor, cadence sensor, etc.).[ citation needed ]

2008–2010 – 3rd generation

The team developed their third generation smartglasses, which included an integrated microcomputer with a graphics processor, line of sight system, camera, audio system and memory storage. The computer was based on dedicated low power Field-Programmable Gate Array (FPGA) hardware that could wirelessly interface with smartphones serving as a gateway to the internet.[ citation needed ]

2010–2012 – 4th generation

The team developed the fourth generation smartglasses that included a patented minimized optical solution [4] also based on the principle of projection from the lens itself. This optical solution enabled significant reduction of the frames in terms of both dimensions and weight. These glasses included aspheric lenses, which are compatible with plastic materials and allow for injection molding. The smaller, redesigned lens had a spherical structure which included built-in correction for optical distortions. This new optical solution was also proved to perform with high optical efficiency, enabling the integration of an OLED display for use and viewing of information outdoors, in full sunlight.[ citation needed ]

2013–2017 – 5th generation

Raptor smartglasses is intended for outdoor athletes (road cyclists and mountain bikers). Raptor smartglasses enable users to see real-time graphic information projected directly from the lens, which appears as an augmented reality layer superimposed over the scene. This information includes physiological data, map navigation, training options, and location and media sharing. [5]

The 5th generation of the smartglasses which included an even smaller, Android OS-based computer incorporated into the glasses, as well as a camera, memory storage, audio system, voice commands, wireless interfaces (Wi-Fi, Bluetooth & ANT+), touchpad, and batteries. These glasses used lenses developed for the fourth generation. As part of the development process, the glasses transitioned to mass production, with injection molding production lines opened for both the plastic lenses and the frames.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Wearable computer</span> Small computing device worn on the body

A wearable computer, also known as a body-borne computer, is a computing device worn on the body. The definition of 'wearable computer' may be narrow or broad, extending to smartphones or even ordinary wristwatches.

<span class="mw-page-title-main">Augmented reality</span> View of the real world with computer-generated supplementary features

Augmented reality (AR) is an interactive experience that combines the real world and computer-generated content. The content can span multiple sensory modalities, including visual, auditory, haptic, somatosensory and olfactory. AR can be defined as a system that incorporates three basic features: a combination of real and virtual worlds, real-time interaction, and accurate 3D registration of virtual and real objects. The overlaid sensory information can be constructive, or destructive. This experience is seamlessly interwoven with the physical world such that it is perceived as an immersive aspect of the real environment. In this way, augmented reality alters one's ongoing perception of a real-world environment, whereas virtual reality completely replaces the user's real-world environment with a simulated one.

<span class="mw-page-title-main">Head-up display</span> Transparent display presenting data within normal sight lines of the user

A head-up display, or heads-up display, also known as a HUD or head-up guidance system (HGS), is any transparent display that presents data without requiring users to look away from their usual viewpoints. The origin of the name stems from a pilot being able to view information with the head positioned "up" and looking forward, instead of angled down looking at lower instruments. A HUD also has the advantage that the pilot's eyes do not need to refocus to view the outside after looking at the optically nearer instruments.

<span class="mw-page-title-main">EyeTap</span> Wearable computer worn in front of the eye

An EyeTap is a concept for a wearable computing device that is worn in front of the eye that acts as a camera to record the scene available to the eye as well as a display to superimpose computer-generated imagery on the original scene available to the eye. This structure allows the user's eye to operate as both a monitor and a camera as the EyeTap intakes the world around it and augments the image the user sees allowing it to overlay computer-generated data over top of the normal world the user would perceive.

<span class="mw-page-title-main">Computer-mediated reality</span> Ability to manipulate ones perception of reality through the use of a computer

Computer-mediated reality refers to the ability to add to, subtract information from, or otherwise manipulate one's perception of reality through the use of a wearable computer or hand-held device such as a smartphone.

<span class="mw-page-title-main">3D display</span> Display device

A 3D display is a display device capable of conveying depth to the viewer. Many 3D displays are stereoscopic displays, which produce a basic 3D effect by means of stereopsis, but can cause eye strain and visual fatigue. Newer 3D displays such as holographic and light field displays produce a more realistic 3D effect by combining stereopsis and accurate focal length for the displayed content. Newer 3D displays in this manner cause less visual fatigue than classical stereoscopic displays.

<span class="mw-page-title-main">Head-mounted display</span> Type of display device

A head-mounted display (HMD) is a display device, worn on the head or as part of a helmet, that has a small display optic in front of one or each eye. An HMD has many uses including gaming, aviation, engineering, and medicine. Virtual reality headsets are HMDs combined with IMUs. There is also an optical head-mounted display (OHMD), which is a wearable display that can reflect projected images and allows a user to see through it.

<span class="mw-page-title-main">Virtual retinal display</span> Display technology

A virtual retinal display (VRD), also known as a retinal scan display (RSD) or retinal projector (RP), is a display technology that draws a raster display directly onto the retina of the eye.

<span class="mw-page-title-main">Bionic contact lens</span> Proposed device to display information

Bionic contact lenses are devices that, it is proposed by the manufacturers and developers, could provide a virtual display that could have a variety of uses from assisting the visually impaired to video gaming. The device will have the form of a conventional contact lens with added bionics technology in the form of a head-up display, with functional electronic circuits and infrared lights to create a virtual display allowing the viewer to see a computer-generated display superimposed on the world outside.

Vuzix is an American multinational technology company headquartered in Rochester, New York and founded by Paul Travers in 1997. Vuzix is a supplier of wearable virtual reality and augmented reality display technology. Vuzix manufactures and sells computer display devices and software. Vuzix head-mounted displays are marketed towards mobile and immersive augmented reality applications, such as 3D gaming, manufacturing training, and military tactical equipment. On January 5, 2015, Intel acquired 30% of Vuzix's stock for $24.8 million.

<span class="mw-page-title-main">Recon Instruments</span>

Recon Instruments was a Canadian technology company that produced smartglasses and wearable displays marketed by the company as "heads-up displays" for sports. Recon's products delivered live activity metrics, GPS maps, and notifications directly to the user's eye. Recon's first heads-up display offering was released commercially in October 2010, roughly a year and a half before Google introduced Google Glass.

Google Pixel is a brand of portable consumer electronic devices developed by Google that run either ChromeOS or the Android operating system. The main line of Pixel products consist of Android-powered smartphones, which have been produced since October 2016 as the replacement of the older Nexus, and of which the Pixel 8 and 8 Pro are the current models. The Pixel brand also includes laptop and tablet computers, as well as several accessories, and was originally introduced in February 2013 with the Chromebook Pixel.

<span class="mw-page-title-main">Optical head-mounted display</span> Type of wearable device

An optical head-mounted display (OHMD) is a wearable device that has the capability of reflecting projected images as well as allowing the user to see through it. In some cases, this may qualify as augmented reality (AR) technology. OHMD technology has existed since 1997 in various forms, but despite a number of attempts from industry, has yet to have had major commercial success.

The Human Media Lab(HML) is a research laboratory in Human-Computer Interaction at Queen's University's School of Computing in Kingston, Ontario. Its goals are to advance user interface design by creating and empirically evaluating disruptive new user interface technologies, and educate graduate students in this process. The Human Media Lab was founded in 2000 by Prof. Roel Vertegaal and employs an average of 12 graduate students.

<span class="mw-page-title-main">Smartglasses</span> Wearable computers glasses

Smartglasses or smart glasses are eye or head-worn wearable computers that offer useful capabilities to the user. Many smartglasses include displays that add information alongside or to what the wearer sees. Alternatively, smartglasses are sometimes defined as glasses that are able to change their optical properties, such as smart sunglasses that are programmed to change tint by electronic means. Alternatively, smartglasses are sometimes defined as glasses that include headphone functionality.

<span class="mw-page-title-main">Windows Mixed Reality</span> Mixed reality platform

Windows Mixed Reality (WMR) is a discontinued platform by Microsoft which provides augmented reality and virtual reality experiences with compatible head-mounted displays.

<span class="mw-page-title-main">Microsoft HoloLens</span> Mixed reality smartglasses

Microsoft HoloLens is an augmented reality (AR)/mixed reality (MR) headset developed and manufactured by Microsoft. HoloLens runs the Windows Mixed Reality platform under the Windows 10 operating system. Some of the positional tracking technology used in HoloLens can trace its lineage to the Microsoft Kinect, an accessory for Microsoft's Xbox 360 and Xbox One game consoles that was introduced in 2010.

<span class="mw-page-title-main">Spectacles (product)</span> Smartglasses for recording Snapchat video

Spectacles are smartglasses dedicated to recording video for the Snapchat service. This term is often used to address sunglasses and eyeglasses. They feature a camera lens and are capable of recording short video segments and syncing with a smartphone to upload to the user's online account. They were developed and manufactured by Snap Inc., and announced on September 23, 2016. The smartglasses were released on November 10, 2016. They are made for Snap's image messaging and multimedia platform, Snapchat, and were initially distributed exclusively through Snap's pop-up vending machine, Snapbot. On February 20, 2017, Snap Spectacles became available for purchase online.

<span class="mw-page-title-main">Oculus Rift CV1</span> Virtual reality headset by Oculus VR

Oculus Rift CV1, also known simply as Oculus Rift, is a virtual reality headset developed by Oculus VR, a subsidiary of Meta Platforms, known at the time as Facebook Inc. It was announced in January 2016, and released in March the same year. The device constituted the first commercial release in the Oculus Rift lineup.

Ray-Ban Meta Smart Glasses, formerly known as Ray-Ban Stories, are smartglasses created as a collaboration between Meta Platforms and EssilorLuxottica. The product includes two cameras, open-ear speakers, a microphone, and touchpad, all built into the frame. The glasses, announced in August 2020 and released on September 9, 2021, had a controversial reception stemming from mistrust over Facebook’s privacy controls. The small size of the recording indicator light has also led to controversy post-release. Ray-Ban Stories are the latest in a line of smartglasses released by major companies including Snap Inc and Google and are designed as one component of Facebook’s plans for a metaverse. Unlike smart glasses previously created by other companies, the Ray-Ban Stories do not include any HUD or AR head-mounted display. On September 27, 2023, Meta removed the "Stories" name and announced the second generation of Meta Ray-Ban Smartglasses, which featured a Qualcomm Snapdragon AR1 Gen1 processor, upgrade of the cameras to 12 MP, improved audio, livestreaming to Facebook and Instagram, and Meta AI.

References

  1. Takahashi, Dean (October 24, 2017). "Everysight to sell Raptor AR smartglasses for cyclists". Venturebeat.
  2. "US8079713B2 – Near eye display system". Google Patents. Google.
  3. R. Hainich, Rolf. "Approaches to Ideal Freeform Mirror and Display Shapes for Augmented Reality". The End of Hardware.
  4. "US20150168730A1 – Wearable optical display system for unobstructed viewing". Google Patents. Google.
  5. Everysight to sell Raptor AR smartglasses for cyclists