Exometeorology

Last updated
Artist's concept of Gliese 1214 b showing clouds covering the planet's surface. Because there are such a wide variety of exoplanets, air and cloud compositions and circulation patterns can vary greatly from exoplanet to exoplanet. Clouds in Atmosphere of Exoplanet GJ 1214b (Artist's View).tif
Artist's concept of Gliese 1214 b showing clouds covering the planet's surface. Because there are such a wide variety of exoplanets, air and cloud compositions and circulation patterns can vary greatly from exoplanet to exoplanet.

Exometeorology is the study of atmospheric conditions of exoplanets and other non-stellar celestial bodies outside the Solar System, such as brown dwarfs. [1] [2] The diversity of possible sizes, compositions, and temperatures for exoplanets (and brown dwarfs) leads to a similar diversity of theorized atmospheric conditions. However, exoplanet detection technology has only recently[ when? ] developed enough to allow direct observation of exoplanet atmospheres, so there is currently very little observational data about meteorological variations in those atmospheres.

Contents

Observational and theoretical foundations

Modeling and theoretical foundations

Climate models have been used to study Earth's climate since the 1960s and other planets in our solar system since the 1990s. [3] Once exoplanets were discovered, those same models were used to investigate the climates of planets such as Proxima Centauri b and the now-refuted Gliese 581g. These studies simulated what atmospheric pressures and compositions are necessary to maintain liquid water on each terrestrial exoplanet's surface, given their orbital distances and rotation periods. [3] Climate models have also been used to study the possible atmospheres of the Hot Jupiter HD 209458b, the Hot Neptune GJ 1214b, and Kepler-1649b, a theorized Venus analog. [3] [4] [5] [6]

These models assume that the exoplanet in question has an atmosphere in order to determine its climate. Without an atmosphere, the only temperature variations on the planet's surface would be due to insolation from its star. [7] Additionally, the main causes of weather - air pressure and air temperature differences which drive winds and the motion of air masses - can only exist in an environment with a significant atmosphere, as opposed to a tenuous and, consequently, rather static atmosphere, like that of Mercury. [8] Thus, the existence of exometeorological weather (as opposed to space weather) on an exoplanet depends on whether it has an atmosphere at all.

Recent discoveries and observational foundations

The first exoplanet atmosphere ever observed was that of HD 209458b, a Hot Jupiter orbiting a G-type star similar in size and mass to our sun. Its atmosphere was discovered by spectroscopy; as the planet transited its star, its atmosphere absorbed some of the star's light according to the detectable absorption spectrum of sodium in the planet's atmosphere. [9] While the presence of sodium was later refuted, [10] that discovery paved the way for many other exoplanet atmospheres to be observed and measured. Recently, terrestrial exoplanets have had their atmospheres observed; in 2017, astronomers using a telescope at the European Southern Observatory (ESO) in Chile found an atmosphere on earth-sized exoplanet Gliese 1132 b. [11]

However, measuring traditional meteorological variations in an exoplanet's atmosphere — such as precipitation or cloud coverage — is more difficult than observing just the atmosphere, due to the limited resolutions of current telescopes. That said, some exoplanets have shown atmospheric variations when observed at different times and other evidence of active weather. For example, an international team of astronomers in 2012 observed variations in hydrogen escape speeds from the atmosphere of HD 189733 b using the Hubble Space Telescope. [12] Additionally, HD 189733 b and Tau Boötis Ab have their hottest surface temperatures displaced eastward from their subsolar points, which is only possible if those tidally-locked planets have strong winds displacing the heated air eastward, i.e. a westerly wind. [13] Lastly, computer simulations of HD 80606b predict that the sudden increase in insolation it receives at periastron spawns shockwave-like windstorms that reverberate around the planet and distribute the sudden heat influx. [14]

Theorized weather

Artist's impression of HD 189733b. This exoplanet has numerous observed and theorized weather conditions, including variations in the escape speed of atmospheric hydrogen, 2 km/s winds in an easterly jet around its equator, and rains of molten glass. Artist's impression of the deep blue planet HD 189733b.jpg
Artist's impression of HD 189733b. This exoplanet has numerous observed and theorized weather conditions, including variations in the escape speed of atmospheric hydrogen, 2 km/s winds in an easterly jet around its equator, and rains of molten glass.

Empirical observations of weather on exoplanets are still rudimentary, due to the limited resolutions of current telescopes. What little atmospheric variations can be observed usually relate to wind, such as variations in the escape speeds of atmospheric hydrogen in HD 189733b [12] or just the speeds of globally circulating winds on that same planet. [16] However, a number of other observable, non-meteorological properties of exoplanets factor into what exoweather is theorized to occur on their surfaces; some of these properties are listed below.

Presence of an atmosphere

As mentioned previously, exometeorology requires that an exoplanet has an atmosphere. Some exoplanets that do not currently have atmospheres began with one; however, these likely lost their primordial atmospheres due to atmospheric escape [17] from stellar insolation and stellar flares or lost them due to giant impacts [18] stripping the exoplanet's atmosphere.

Some exoplanets, specifically lava planets, might have partial atmospheres with unique meteorological patterns. Tidally-locked lava worlds receive so much stellar insolation that some molten crust vaporizes and forms an atmosphere on the day side of the planet. Strong winds attempt to carry this new atmosphere to the night side of the planet; however, the vaporized atmosphere cools as it nears the planet's night side and precipitates back down to the surface, essentially collapsing once it reaches the terminator. This effect has been modeled based on data from transits of K2-141b [19] as well as CoRoT-7b, Kepler-10b, and 55 Cancri e. [20] This unusual pattern of crustal evaporation, kilometer-per-second winds, and atmospheric collapse through precipitation might be provable with observations by advanced telescopes like Webb. [19]

Exoplanets with full atmospheres are able to have diverse ranges of weather conditions, similar to weather on the terrestrial planets and gas giants of our Solar System. [13] Planet-wide atmospheres allow for global air circulation, stellar thermal energy distribution, [13] and relatively fast chemical cycling, as seen in the crustal material transportation by lava worlds' partial atmospheres and Earth's own water and carbon cycles. This ability to cycle and globally distribute matter and energy can drive iron rain on hot Jupiters, [13] 2 km/s (4,500 mph) super-rotating winds on HD 189733b, [16] and atmospheric precipitation and collapse on tidally-locked worlds. [21]

Orbital properties

One of the most important factors determining an exoplanet's properties is its orbital period, or its average distance from its star. This alone determines a planet's effective temperature (the baseline temperature without added insulation from an atmosphere) [7] and how likely the planet is to be tidally locked. [22] These, in turn, can affect what chemical compositions of clouds can be present in a planet's atmosphere, [13] the general motion of heat transfer and atmospheric circulation, [23] and the locations where weather can occur (as with tidally-locked lava worlds with partial atmospheres).

For example, a gas giant's orbital period can determine whether its wind patterns are primarily advective (heat and air flowing from the top of the star-heated atmosphere to the bottom) or convective (heat and air flowing from down near the gradually contracting planet's core up through the atmosphere). If a gas giant's atmosphere receives more heat from insolation than the planet's unending gravitational contraction, then it will have advective circulation patterns; if the opposite heat source is stronger, it will have convective circulation patterns, as Jupiter exhibits. [13]

Additionally, an exoplanet's average incident stellar radiation, determined by its orbital period, can determine what types of chemical cycling an exoplanet might have. Earth's water cycle occurs because our planet's average temperature is close enough to water's triple point (at normal atmospheric pressures) that the planet's surface can sustain three phases of the chemical; similar cycling is theorized for Titan, as its surface temperature and pressure is close to methane's triple point. [24]

Similarly, an exoplanet's orbital eccentricity – how elliptical the planet's orbit is – can affect the incident stellar radiation it receives at different points in its orbit, and thus, can affect its meteorology. An extreme example of this is HD 80606b's shockwave-like storms that occur whenever the planet reaches the innermost point in its extremely eccentric orbit. The difference in distance between its apastron (analogous to Earth's aphelion) and its periastron (perihelion) is so large that the planet's effective temperature varies greatly throughout its orbit. [14] A less extreme example is eccentricity in a terrestrial exoplanet's orbit. If the rocky planet orbits a dim red dwarf star, slight eccentricities can lead to effective temperature variations large enough to collapse the planet's atmosphere, given the right atmospheric compositions, temperatures, and pressures. [21]

See also

Related Research Articles

<span class="mw-page-title-main">Exoplanet</span> Planet outside the Solar System

An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of the detection occurred in 1992. A different planet, initially detected in 1988, was confirmed in 2003. As of 1 December 2023, there are 5,550 confirmed exoplanets in 4,089 planetary systems, with 887 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, and also much more about exoplanets, including composition, environmental conditions and potential for life.

<span class="mw-page-title-main">Atmospheric science</span> Study of the atmosphere, its processes, and its interactions with other systems

Atmospheric science is the study of the Earth's atmosphere and its various inner-working physical processes. Meteorology includes atmospheric chemistry and atmospheric physics with a major focus on weather forecasting. Climatology is the study of atmospheric changes that define average climates and their change over time, due to both natural and anthropogenic climate variability. Aeronomy is the study of the upper layers of the atmosphere, where dissociation and ionization are important. Atmospheric science has been extended to the field of planetary science and the study of the atmospheres of the planets and natural satellites of the Solar System.

<span class="mw-page-title-main">HD 209458 b</span> Gas giant exoplanet orbiting HD 209458

HD 209458 b is an exoplanet that orbits the solar analog HD 209458 in the constellation Pegasus, some 157 light-years from the Solar System. The radius of the planet's orbit is 0.047 AU, or one-eighth the radius of Mercury's orbit. This small radius results in a year that is 3.5 Earth-days long and an estimated surface temperature of about 1,000 °C. Its mass is 220 times that of Earth and its volume is some 2.5 times greater than that of Jupiter. The high mass and volume of HD 209458 b indicate that it is a gas giant.

<span class="mw-page-title-main">Hot Jupiter</span> Class of high mass planets orbiting close to a star

Hot Jupiters are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter but that have very short orbital periods. The close proximity to their stars and high surface-atmosphere temperatures resulted in their informal name "hot Jupiters".

<span class="mw-page-title-main">Habitable zone</span> Orbits where planets may have liquid surface water

In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

<span class="mw-page-title-main">Exomoon</span> Moon beyond the Solar System

An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.

Atmospheric escape is the loss of planetary atmospheric gases to outer space. A number of different mechanisms can be responsible for atmospheric escape; these processes can be divided into thermal escape, non-thermal escape, and impact erosion. The relative importance of each loss process depends on the planet's escape velocity, its atmosphere composition, and its distance from its star. Escape occurs when molecular kinetic energy overcomes gravitational energy; in other words, a molecule can escape when it is moving faster than the escape velocity of its planet. Categorizing the rate of atmospheric escape in exoplanets is necessary to determining whether an atmosphere persists, and so the exoplanet's habitability and likelihood of life.

<span class="mw-page-title-main">HD 189733</span> Binary star system in the constellation Vulpecula

HD 189733, also catalogued as V452 Vulpeculae, is a binary star system 64.5 light-years away in the constellation of Vulpecula. The primary star is suspected to be an orange dwarf star, while the secondary star is a red dwarf star. Given that this system has the same visual magnitude as HD 209458, it promises much for the study of close transiting extrasolar planets. The star can be found with binoculars 0.3 degrees east of the Dumbbell Nebula (M27).

<span class="mw-page-title-main">Gliese 581d</span> Contested super-Earth orbiting Gliese 581

Gliese 581d was a candidate extrasolar planet orbiting within the Gliese 581 system, approximately 20.4 light-years away in the Libra constellation. It was the third planet claimed in the system and the fourth or fifth in order from the star. Multiple subsequent studies found that the planetary signal in fact originates from stellar activity, and thus the planet does not exist.

<span class="mw-page-title-main">Extraterrestrial atmosphere</span> Area of astronomical research

The study of extraterrestrial atmospheres is an active field of research, both as an aspect of astronomy and to gain insight into Earth's atmosphere. In addition to Earth, many of the other astronomical objects in the Solar System have atmospheres. These include all the gas giants, as well as Mars, Venus and Titan. Several moons and other bodies also have atmospheres, as do comets and the Sun. There is evidence that extrasolar planets can have an atmosphere. Comparisons of these atmospheres to one another and to Earth's atmosphere broaden our basic understanding of atmospheric processes such as the greenhouse effect, aerosol and cloud physics, and atmospheric chemistry and dynamics.

<span class="mw-page-title-main">HD 189733 b</span> Hot Jupiter exoplanet in the constellation Vulpecula

HD 189733 b is an exoplanet in the constellation of Vulpecula approximately 64.5 light-years away from our Solar System. Astronomers in France discovered the planet orbiting the star HD 189733 on October 5, 2005, by observing its transit across the star's face. With a mass 11.2% higher than that of Jupiter and a radius 11.4% greater, HD 189733 b orbits its host star once every 2.2 days at an orbital speed of 152.0 kilometers per second, making it a hot Jupiter with poor prospects for extraterrestrial life.

This page describes exoplanet orbital and physical parameters.

<span class="mw-page-title-main">Habitability of natural satellites</span> Measure of the potential of natural satellites to have environments hospitable to life

The habitability of natural satellites describes the study of a moon's potential to provide habitats for life, though is not an indicator that it harbors it. Natural satellites are expected to outnumber planets by a large margin and the study is therefore important to astrobiology and the search for extraterrestrial life. There are, nevertheless, significant environmental variables specific to moons.

<span class="mw-page-title-main">WASP-12b</span> Hot Jupiter exoplanet in the constellation Auriga

WASP-12b is a hot Jupiter orbiting the star WASP-12, discovered on April 1, 2008, by the SuperWASP planetary transit survey. The planet takes only a little over one Earth day to orbit its star, in contrast to about 365.25 days for the Earth to orbit the Sun. Its distance from the star is only the Earth's distance from the Sun, with an eccentricity the same as Jupiter's. Consequently, it has one of the lowest densities for exoplanets. On December 3, 2013, scientists working with the Hubble Space Telescope (HST) reported detecting water in the atmosphere of the exoplanet. In July 2014, NASA announced finding very dry atmospheres on three exoplanets orbiting sun-like stars.

<span class="mw-page-title-main">HD 80606 b</span> Eccentric hot Jupiter in the constellation Ursa Major

HD 80606 b is an eccentric hot Jupiter 217 light-years from the Sun in the constellation of Ursa Major. HD 80606 b was discovered orbiting the star HD 80606 in April 2001 by a team led by Michel Mayor and Didier Queloz. With a mass 4 times that of Jupiter, it is a gas giant. Because the planet transits the host star its radius can be determined using the transit method, and was found to be about the same as Jupiter's. Its density is slightly less than Earth's. It has an extremely eccentric orbit like a comet, with its orbit taking it very close to its star and then back out very far away from it every 111 days.

<span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 December 2023, there are 5,550 confirmed exoplanets in 4,089 planetary systems, with 887 systems having more than one planet. This is a list of the most notable discoveries.

<span class="mw-page-title-main">Habitability of red dwarf systems</span> Possible factors for life around red dwarf stars

The theorized habitability of red dwarf systems is determined by a large number of factors. Modern evidence indicates that planets in red dwarf systems are unlikely to be habitable, due to their low stellar flux, high probability of tidal locking and thus likely lack of magnetospheres and atmospheres, small circumstellar habitable zones and the high stellar variation experienced by planets of red dwarf stars, impeding their planetary habitability. However, the ubiquity and longevity of red dwarfs could provide ample opportunity to realize any small possibility of habitability.

<span class="mw-page-title-main">TRAPPIST-1</span> Ultra-cool red dwarf star in the constellation Aquarius

TRAPPIST-1 is a cool red dwarf star with seven known exoplanets. It lies in the constellation Aquarius about 40.66 light-years away from Earth, and has a surface temperature of about 2,566 kelvins. Its radius is slightly larger than Jupiter and it has a mass of about 9% of the Sun. It is estimated to be 7.6 billion years old, making it older than the Solar System. The discovery of the star was first published in 2000.

<span class="mw-page-title-main">TRAPPIST-1b</span> Rocky exoplanet orbiting TRAPPIST-1

TRAPPIST-1b, also designated as 2MASS J23062928-0502285 b, is a mainly rocky exoplanet orbiting around the ultra-cool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The planet was detected using the transit method, where a planet dims the host star's light as it passes in front of it. It was first announced on May 2, 2016, and later studies were able to refine its physical parameters.

<span class="mw-page-title-main">K2-18b</span> Mini-Neptune orbiting the red dwarf K2-18

K2-18b, also known as EPIC 201912552 b, is an exoplanet orbiting the red dwarf K2-18, located 124 light-years (38 pc) away from Earth. The planet, initially discovered with the Kepler space telescope, is about eight times the mass of Earth, and is thus classified as a Mini-Neptune. It has a 33-day orbit within the star's habitable zone, meaning that it receives about a similar amount of starlight as the Earth receives from the Sun and could have similar conditions, which allow the existence of liquid water.

References

  1. Allers, Katelyn (2019-10-10). "Exometeorology: Determining atmospheric ..., Dr. K. Allers". Western Events Calendar. The University of Western Ontario. Archived from the original on 2023-03-14. Retrieved 2023-03-14.
  2. "Exoplanets subject to meteorological variations". ScienceDaily. Délégation Paris Michel-Ange. 2012-07-10. Archived from the original on 2023-03-14. Retrieved 2023-03-14.
  3. 1 2 3 Shields, Aomawa L. (2019-08-09). "The Climates of Other Worlds: A Review of the Emerging Field of Exoplanet Climatology". The Astrophysical Journal Supplement Series. 243 (2): 30. arXiv: 1909.04046 . Bibcode:2019ApJS..243...30S. doi: 10.3847/1538-4365/ab2fe7 . ISSN   0067-0049. S2CID   202142065.
  4. Showman, Adam P.; Cooper, Curtis S.; Fortney, Jonathan J.; Marley, Mark S. (2008-07-20). "Atmospheric Circulation of Hot Jupiters: Three‐dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing". The Astrophysical Journal. 682 (1): 559–576. arXiv: 0802.0327 . Bibcode:2008ApJ...682..559S. doi:10.1086/589325. ISSN   0004-637X. S2CID   14470834. Archived from the original on 2023-03-25. Retrieved 2023-04-15.
  5. Charnay, B.; Meadows, V.; Leconte, J. (2015-10-22). "3D Modeling of Gj1214B's Atmosphere: Vertical Mixing Driven by an Anti-Hadley Circulation". The Astrophysical Journal. 813 (1): 15. arXiv: 1509.06814 . Bibcode:2015ApJ...813...15C. doi:10.1088/0004-637X/813/1/15. ISSN   1538-4357. S2CID   119159435. Archived from the original on 2023-03-25. Retrieved 2023-04-15.
  6. Kane, Stephen R.; Ceja, Alma Y.; Way, Michael J.; Quintana, Elisa V. (2018-12-11). "Climate Modeling of a Potential ExoVenus". The Astrophysical Journal. 869 (1): 46. arXiv: 1810.10072 . Bibcode:2018ApJ...869...46K. doi: 10.3847/1538-4357/aaec68 . ISSN   1538-4357. PMC   6326386 . PMID   30636775.
  7. 1 2 Allain, Rhett (2023-02-03). "What Would Earth's Temperature Be Like Without an Atmosphere?". Wired. ISSN   1059-1028 . Retrieved 2023-03-25.
  8. Moran, Joseph M. (1 May 2005). ""Weather"". NASA. NASA & World Book, Inc. Archived from the original on 1 May 2005. Retrieved 3 July 2023.
  9. Charbonneau, David; Brown, Timothy M.; Noyes, Robert W.; Gilliland, Ronald L. (20 March 2002). "Detection of an Extrasolar Planet Atmosphere". The Astrophysical Journal. 568 (1): 377–384. arXiv: astro-ph/0111544 . Bibcode:2002ApJ...568..377C. doi:10.1086/338770. S2CID   14487268.
  10. Casasayas-Barris, N.; Pallé, E.; Yan, F.; Chen, G.; Luque, R.; Stangret, M.; Nagel, E.; Zechmeister, M.; Oshagh, M.; Sanz-Forcada, J.; Nortmann, L.; Alonso-Floriano, F. J.; Amado, P. J.; Caballero, J. A.; Czesla, S.; Khalafinejad, S.; López-Puertas, M.; López-Santiago, J.; Molaverdikhani, K.; Montes, D.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sánchez-López, A.; Zapatero Osorio, M. R. (March 2020). "Is there Na I in the atmosphere of HD 209458b?: Effect of the centre-to-limb variation and Rossiter-McLaughlin effect in transmission spectroscopy studies". Astronomy & Astrophysics. 635: A206. arXiv: 2002.10595 . Bibcode:2020A&A...635A.206C. doi:10.1051/0004-6361/201937221. S2CID   247760051.
  11. Lewin, Sarah (2017-04-06). "Discovery! Atmosphere Spotted on Nearly Earth-Size Exoplanet in First". Space.com. Archived from the original on 2023-03-14. Retrieved 2023-03-14.
  12. 1 2 Lecavelier des Etangs, A.; Bourrier, V.; Wheatley, P. J.; Dupuy, H.; Ehrenreich, D.; Vidal-Madjar, A.; Hébrard, G.; Ballester, G. E.; Désert, J.-M.; Ferlet, R.; Sing, D. K. (July 2012). "Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b". Astronomy & Astrophysics. 543: L4. arXiv: 1206.6274 . Bibcode:2012A&A...543L...4L. doi:10.1051/0004-6361/201219363. S2CID   54546633.
  13. 1 2 3 4 5 6 Stevenson, David S. (2016). The Exo-Weather Report : Exploring Diverse Atmospheric Phenomena Around the Universe. Switzerland: Springer Cham. pp. 363–371. ISBN   978-3-319-25679-5. OCLC   957655924.
  14. 1 2 Langton, Jonathan; Laughlin, Gregory (20 February 2008). "Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets". The Astrophysical Journal. 674 (2): 1106–1116. arXiv: 0711.2106 . Bibcode:2008ApJ...674.1106L. doi:10.1086/523957. S2CID   14333025. Archived from the original on 28 March 2023. Retrieved 15 April 2023.
  15. Garner, Rob (31 October 2016). "NASA Hubble Finds a True Blue Planet". NASA. Archived from the original on 26 June 2023. Retrieved 31 May 2023.
  16. 1 2 Louden, Tom; Wheatley, Peter J. (25 November 2015). "SPATIALLY RESOLVED EASTWARD WINDS AND ROTATION OF HD 189733b". The Astrophysical Journal. 814 (2): L24. arXiv: 1511.03689 . Bibcode:2015ApJ...814L..24L. doi:10.1088/2041-8205/814/2/L24. S2CID   54038139.
  17. Gianopoulos, Andrea (3 February 2022). "Puffy Planets Lose Atmospheres, Become Super Earths". NASA. Archived from the original on 26 May 2023. Retrieved 15 April 2023.
  18. Schneiderman, Tajana; Matrà, Luca; Jackson, Alan P.; Kennedy, Grant M.; Kral, Quentin; Marino, Sebastián; Öberg, Karin I.; Su, Kate Y. L.; Wilner, David J.; Wyatt, Mark C. (21 October 2021). "Carbon monoxide gas produced by a giant impact in the inner region of a young system". Nature. 598 (7881): 425–428. arXiv: 2110.15377 . Bibcode:2021Natur.598..425S. doi:10.1038/s41586-021-03872-x. PMID   34671135. S2CID   239050652.
  19. 1 2 Bartels, Meghan (5 November 2020). "This bizarre planet could have supersonic winds in an atmosphere of vaporized rock". Space.com. Archived from the original on 12 May 2021. Retrieved 15 April 2023.
  20. Castan, Thibaut; Menou, Kristen (20 December 2011). "Atmospheres of Hot Super-Earths". The Astrophysical Journal. 743 (2): L36–L41. arXiv: 1109.0659 . Bibcode:2011ApJ...743L..36C. doi:10.1088/2041-8205/743/2/L36. S2CID   119118559.
  21. 1 2 Joshi, M.M.; Haberle, R.M.; Reynolds, R.T. (October 1997). "Simulations of the Atmospheres of Synchronously Rotating Terrestrial Planets Orbiting M Dwarfs: Conditions for Atmospheric Collapse and the Implications for Habitability". Icarus. 129 (2): 450–465. Bibcode:1997Icar..129..450J. doi:10.1006/icar.1997.5793. Archived from the original on 2021-10-18. Retrieved 2023-04-15.
  22. Barnes, Rory (December 2017). "Tidal locking of habitable exoplanets". Celestial Mechanics and Dynamical Astronomy. 129 (4): 509–536. arXiv: 1708.02981 . Bibcode:2017CeMDA.129..509B. doi:10.1007/s10569-017-9783-7. S2CID   254369144.
  23. Pierrehumbert, Raymond T.; Hammond, Mark (5 January 2019). "Atmospheric Circulation of Tide-Locked Exoplanets". Annual Review of Fluid Mechanics. 51 (1): 275–303. Bibcode:2019AnRFM..51..275P. doi: 10.1146/annurev-fluid-010518-040516 . ISSN   0066-4189. S2CID   125645319.
  24. Tasker, Elizabeth (2019). The Planet Factory: Exoplanets and the Search for a Second Earth (1st ed.). United Kingdom: Bloomsbury Publishing. pp. 287–288. ISBN   978-1-4729-5644-6. OCLC   1252735501. Archived from the original on 2023-07-24. Retrieved 2023-04-15.