Fairey FB-1 Gyrodyne

Last updated

FB-1 Gyrodyne
Fairey FB-1 Gyrodyne.jpg
The Fairey FB-1 Gyrodyne prototype in test
Role Gyrodyne
National originUnited Kingdom
Manufacturer Fairey
DesignerDr. J.A.J. Bennett
First flight4 December 1947
RetiredCancelled 1949
Number built2
Variants Fairey Jet Gyrodyne

The Fairey FB-1 Gyrodyne is an experimental British rotorcraft that used single lifting rotor and a tractor propeller mounted on the tip of the starboard stub wing to provide both propulsion and anti-torque reaction.

Contents

Design and development

In April 1946, Fairey announced a private-venture project for a rotary-wing aircraft, to be built to a design developed by Dr. J.A.J. Bennett while he was chief technical officer at the Cierva Autogiro Company in 19361939. The Gyrodyne, constituting a third distinct type of rotorcraft and designated C.41 by the Cierva Autogiro Company, was in 1938 successfully tendered to the Royal Navy in response to Specification S.22/38 for a naval helicopter. Though preliminary work started on the project, it was abandoned with the outbreak of the Second World War, and G & J Weir, Ltd., the financiers of the Cierva Autogiro Company, declined to undertake further development in addition to their successful experiments with the W.5 and W.6 lateral twin-rotor helicopters. After the Second World War, the Cierva Autogiro Company was engaged with the development of the Cierva W.9 "Drainpipe" and the W.11 Air Horse helicopters under the direction of Cyril Pullin, and Bennett joined Fairey in late 1945 as head of the newly established rotary wing aircraft division.

The Gyrodyne was a compact, streamlined rotorcraft weighing just over 4,410 lb (2,000 kg) and powered by a 520–540 hp (390–400 kW) Alvis Leonides 522/2 radial engine, the power from which could be transmitted in variable ratios to the fixed-shaft/swashplate-actuated tilting hub-controlled rotor and the wing tip mounted propeller. The Gyrodyne possessed the hovering capability of a helicopter, while its propeller provided the necessary thrust for forward flight to enable its rotor, driven at low torque in cruise flight, to operate at low collective pitch with the tip-path plane parallel to the flight path to minimise vibration at high airspeed. Collective pitch was an automatic function of throttle setting and power loading of the propeller, which to maintain rpm diverted torque away from the rotor as airspeed increased. [1]

A government contract to Specification E.4/46 was awarded for two prototypes with the first Fairey Gyrodyne exhibited as an almost complete airframe at White Waltham on 7 December 1946.

Testing and evaluation

On 4 December 1947, the first of the two prototypes took off from White Waltham airfield, and continued to build up flying time until March 1948 when it was dismantled for a thorough examination. The second prototype, basically similar to the first but with more comfortable interior furnishings befitting its role as a passenger demonstrator, was flying by the time of the next SBAC Farnborough Airshow, in September 1948. The first prototype was reassembled and, following further test flying, took part in an attempt to set a new world helicopter speed record in a straight line. [2]

On 28 June 1948, flown by test pilot Basil Arkell, the Gyrodyne made two flights in each direction over a low-altitude 2-mile-long (3.2 km) course at White Waltham, achieving 124 mph (200 km/h), enough to secure the record. [3] A maximum airspeed of 133 mph (214 km/h) was achieved during the flight, keeping seven inches of boost in reserve in the event a rapid climb became necessary as the flight was conducted at an altitude of less than 100 ft (30 m) above the ground. An attempt was to be made in April 1949 to set a 62 mi (100 km) closed-circuit record, but two days before the date selected a poorly machined flapping link in the rotor hub failed during flight and resulted in the crash of the aircraft at Ufton, near Reading, killing the pilot, Foster H. Dixon and observer, Derek Garraway.

The Gyrodyne had been selected for use by the British Army for use in Malaya, beating both the Westland S.51 Dragonfly (a licence-built Sikorsky design) and the Bristol 171 Sycamore, with an order for six approved by the Treasury at the time of the accident. Though the Gyrodyne's projected performance was significantly better than that of the Dragonfly, and was expected to be in service earlier than the Sycamore, the crash of the first prototype delayed the development programme, and the Army, having no other choice, acquired three S.51 Dragonflies, followed by Sycamores at a later date.

Second prototype

The second Gyrodyne was grounded during the accident investigation which determined flapping hinge retaining nut failure due to poor machining as the cause. The extensively modified second prototype, renamed Jet Gyrodyne, flew in January 1954. Though retaining the name "Gyrodyne", the Jet Gyrodyne was a compound gyroplane, and did not operate on the same principle as the original aircraft. It had a two-blade rotor manually controlled with cyclic and collective pitch mechanisms that acted directly on each rotor blade and was driven by tip jets fed with air from two compressors driven by the Alvis Leonides radial engine. Pusher propellers, one mounted at the tip of each stub wing, provided yaw control through differential collective pitch and thrust for forward flight. The Jet Gyrodyne was constructed to provide rotor drive and operational data for the Fairey Rotodyne compound gyroplane.

The Jet Gyrodyne is on display at the Museum of Berkshire Aviation, Woodley, Reading.

Specifications (Fairey FB-1 Gyrodyne)

Data fromJane's, [4] Flight 21 April 1949 [5]

General characteristics

Performance

See also

Related development

Aircraft of comparable role, configuration, and era

Related lists

Related Research Articles

<span class="mw-page-title-main">Autogyro</span> Rotorcraft with unpowered rotor

An autogyro, or gyroplane, is a type of rotorcraft that uses an unpowered rotor in free autorotation to develop lift. While similar to a helicopter rotor in appearance, the autogyro's unpowered rotor disc must have air flowing upward across it to make it rotate.

<span class="mw-page-title-main">Juan de la Cierva</span> Spanish engineer and count (1895–1936)

Juan de la Ciera y Codorníu, 1st Count of la Ciera was a Spanish civil engineer, pilot and a self-taught aeronautical engineer. His most famous accomplishment was the invention in 1920 of a rotorcraft called Autogiro, a single-rotor type of aircraft that came to be called autogyro in the English language. In 1923, after four years of experimentation, De la Cierva developed the articulated rotor, which resulted in the world's first successful flight of a stable rotary-wing aircraft, with his C.4 prototype.

The CarterCopter is an experimental compound autogyro developed by Carter Aviation Technologies in the United States to demonstrate slowed rotor technology. On 17 June 2005, the CarterCopter became the first rotorcraft to achieve mu-1 (μ=1), an equal ratio of airspeed to rotor tip speed, but crashed on the next flight and has been inoperable since. It is being replaced by the Carter Personal Air Vehicle.

<span class="mw-page-title-main">Fairey Rotodyne</span> 1950s British compound gyroplane

The Fairey Rotodyne was a 1950s British compound gyroplane designed and built by Fairey Aviation and intended for commercial and military uses. A development of the earlier Gyrodyne, which had established a world helicopter speed record, the Rotodyne featured a tip-jet-powered rotor that burned a mixture of fuel and compressed air bled from two wing-mounted Napier Eland turboprops. The rotor was driven for vertical takeoffs, landings and hovering, as well as low-speed translational flight, but autorotated during cruise flight with all engine power applied to two propellers.

<span class="mw-page-title-main">Tip jet</span> Jet nozzle at the tip of some helicopter rotor blades

A tip jet is a jet nozzle at the tip of some helicopter rotor blades, used to spin the rotor, much like a Catherine wheel firework. Tip jets replace the normal shaft drive and have the advantage of placing no torque on the airframe, thus not requiring the presence of a tail rotor. Some simple monocopters are composed of nothing but a single blade with a tip rocket.

<span class="mw-page-title-main">Gyrodyne</span>

A gyrodyne is a type of VTOL aircraft with a helicopter rotor-like system that is driven by its engine for takeoff and landing only, and includes one or more conventional propeller or jet engines to provide forward thrust during cruising flight. During forward flight the rotor is unpowered and free-spinning, like an autogyro, and lift is provided by a combination of the rotor and conventional wings. The gyrodyne is one of a number of similar concepts which attempt to combine helicopter-like low-speed performance with conventional fixed-wing high-speeds, including tiltrotors and tiltwings.

<span class="mw-page-title-main">Rotorcraft</span> Heavier-than-air aircraft which generates lift over rotating wings

A rotorcraft or rotary-wing aircraft is a heavier-than-air aircraft with rotary wings or rotor blades, which generate lift by rotating around a vertical mast. Several rotor blades mounted on a single mast are referred to as a rotor. The International Civil Aviation Organization (ICAO) defines a rotorcraft as "supported in flight by the reactions of the air on one or more rotors".

<span class="mw-page-title-main">Fairey Jet Gyrodyne</span> Type of aircraft

The Fairey Jet Gyrodyne is a British experimental compound gyroplane built by the Fairey Aviation Company that incorporated helicopter, gyrodyne and autogyro characteristics. The Jet Gyrodyne was the subject of a Ministry of Supply (MoS) research contract to gather data for the follow-up design, the Rotodyne.

<span class="mw-page-title-main">Helicopter</span> Type of rotorcraft in which lift and thrust are supplied by horizontally-spinning rotors

A helicopter is a type of rotorcraft in which lift and thrust are supplied by horizontally spinning rotors. This allows the helicopter to take off and land vertically, to hover, and to fly forward, backward and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft and many forms of short take-off and landing (STOL) or short take-off and vertical landing (STOVL) aircraft cannot perform without a runway.

<span class="mw-page-title-main">Autorotation</span> Rotation of helicopter rotors by action of wind resistance rather that engine power

Autorotation is a state of flight in which the main rotor system of a helicopter or other rotary-wing aircraft turns by the action of air moving up through the rotor, as with an autogyro, rather than engine power driving the rotor. The term autorotation dates to a period of early helicopter development between 1915 and 1920, and refers to the rotors turning without the engine. It is analogous to the gliding flight of a fixed-wing aircraft. Autorotation has also evolved to be used by certain trees as a means of disseminating their seeds further.

<span class="mw-page-title-main">Pitcairn OP-1</span> Type of aircraft

The Pitcairn OP-1 was the first rotary-wing aircraft to be seriously evaluated by any of the world's major air forces. The machine was not a helicopter, nor an airplane, but an autogyro. Pitcairn's model was never put into production for any military.

<span class="mw-page-title-main">Percival P.74</span> Type of aircraft

The Percival P.74 was a British experimental helicopter designed in the 1950s that was based on the use of tip-jet powered rotors. Although innovative, the tip-rotor concept literally failed to get off the ground in the P.74, doomed by its inadequate power source. Rather than being modified, the P.74 was towed off the airfield and scrapped.

The Cierva Autogiro Company was a British firm established in 1926 to develop the autogyro. The company was set up to further the designs of Juan de la Cierva, a Spanish engineer and pilot, with the financial backing of James George Weir, a Scottish industrialist and aviator.

<span class="mw-page-title-main">McDonnell XV-1</span> American experimental gyrodyne

The McDonnell XV-1 is an experimental Convertiplane developed by McDonnell Aircraft for a joint research program between the United States Air Force and the United States Army to explore technologies to develop an aircraft that could take off and land like a helicopter but fly at faster airspeeds, similar to a conventional airplane. The XV-1 would reach a speed of 200 mph, faster than any previous rotorcraft, but the program was terminated due to the tip-jet noise and complexity of the technology which gave only a modest gain in performance.

<span class="mw-page-title-main">Cierva C.8</span> Type of aircraft

The Cierva C.8 was an experimental autogyro built by Juan de la Cierva in England in 1926 in association with Avro. Like Cierva's earlier autogyros, the C.8s were based on existing fixed-wing aircraft fuselages – in this case, the Avro 552.

<span class="mw-page-title-main">Pitcairn PCA-2</span> Type of aircraft

The Pitcairn PCA-2 was an autogyro developed in the United States in the early 1930s. It was Harold F. Pitcairn's first autogyro design to be sold in quantity. It had a conventional design for its day – an airplane-like fuselage with two open cockpits in tandem, and an engine mounted tractor-fashion in the nose. The lift by the four-blade main rotor was augmented by stubby, low-set monoplane wings that also carried the control surfaces. The wingtips featured considerable dihedral that acted as winglets for added stability.

<span class="mw-page-title-main">Fairey Ultra-light Helicopter</span> Type of aircraft

The Fairey Ultra-light Helicopter was a small British military helicopter intended to be used for reconnaissance and casualty evacuation, designed by the Fairey Aviation Company.

<span class="mw-page-title-main">Slowed rotor</span> Helicopter design variant

The slowed rotor principle is used in the design of some helicopters. On a conventional helicopter the rotational speed of the rotor is constant; reducing it at lower flight speeds can reduce fuel consumption and enable the aircraft to fly more economically. In the compound helicopter and related aircraft configurations such as the gyrodyne and winged autogyro, reducing the rotational speed of the rotor and offloading part of its lift to a fixed wing reduces drag, enabling the aircraft to fly faster.

<span class="mw-page-title-main">SNCASO Farfadet</span> Experimental convertiplane

The SNCASO SO.1310 Farfadet was an experimental French convertiplane of the 1950s.

A rotor wing is a lifting rotor or wing which spins to provide aerodynamic lift. In general, a rotor may spin about an axis which is aligned substantially either vertically or side-to-side (spanwise). All three classes have been studied for use as lifting rotors and several variations have been flown on full-size aircraft, although only the vertical-axis rotary wing has become widespread on rotorcraft such as the helicopter.

References

Notes
  1. "The Helicopter", Flight: 50, 11 January 1951
  2. Apostolo 1984, p. 66.
  3. "FAI Record ID #13128 - Piston engine helicopters - Speed over a 3 km course" Fédération Aéronautique Internationale Record date 28 June 1948. Accessed: 11 December 2013.
  4. Taylor 1976, p. 95.
  5. "Fairey Gyrodyne". Flight: 453–460. 21 April 1949. Retrieved 6 November 2013.
Bibliography