Faraday-efficiency effect

Last updated

The Faraday-efficiency effect refers to the potential for misinterpretation of data from experiments in electrochemistry through failure to take into account a Faraday efficiency of less than 100 percent.

Contents

Assumption about efficiency

Until recent decades it was common to assume that the release of hydrogen and oxygen gas during electrolysis of water always has a Faraday efficiency of 100%. Pons and Fleischmann, and other investigators who reported the finding of anomalous excess heat in electrolytic cells, [1] all relied on this popular assumption. No one bothered to measure the Faraday efficiency in their cells during the experiments.[ dubious ] Many publications reporting the finding of excess heat included an explicit statement like: "The Faraday efficiency is assumed to be unity." Even if not explicitly stated so, these publications included this implicit assumption in the formulas used to calculate the cells' energy balance.

Relevance to cold fusion

Lacking any other plausible explanation, the anomalous excess heat produced during such electrolysis was attributed by Pons and Fleischmann to cold fusion. Later, it was discovered that such excess heat can easily be the product of conventional chemistry, i.e. internal recombination of hydrogen and oxygen. Such recombination leads to a reduction in the Faraday efficiency of the electrolysis. The Faraday-efficiency effect is the observation of anomalous excess heat due to a reduction in the Faraday efficiency.[ citation needed ]

Measurement

From 1991-1993 a group of investigators, [2] [3] headed by Zvi Shkedi, in the state of Massachusetts, USA, built well-insulated cells and calorimeters which included the capability to measure the actual Faraday efficiency in real-time during the experiments. The cells were of the light-water type; with a fine-wire nickel cathode; a platinum anode; and K2CO3 electrolyte.

The calorimeters were calibrated to an accuracy of 0.02% of input power. The long-term stability of the calorimeters was verified over a period of 9 months of continuous operation. In their publication, the investigators show details of their calorimeters' design and teach the technology of achieving high calorimetric accuracy.

Experiments

A total of 64 experiments were performed in which the actual Faraday efficiency was measured. The results were analyzed twice; once with the popular assumption that the Faraday efficiency is 100%, and, again, taking into account the measured Faraday efficiency in each experiment. The average Faraday efficiency measured in these experiments was 78%.

First analysis

The first analysis, assuming a Faraday efficiency of 100%, yielded an average apparent excess heat of 21% of input power. The term "apparent excess heat" was coined by the investigators to indicate that the actual Faraday efficiency was ignored in the analysis.

Second analysis

The second analysis, taking into account the measured Faraday efficiency, yielded an actual excess heat of 0.13% +/- 0.48%. In other words, when the actual Faraday efficiency was measured and taken into account, the energy balance of the cells was zero, with no excess heat.

Conclusion

This investigation has shown how conventional chemistry, i.e. internal recombination of hydrogen and oxygen, accounted for the entire amount of apparent excess heat. The investigators concluded their publication [2] with the following word of advice:

"All reports claiming the observation of excess heat should be accompanied by simultaneous measurements of the actual Faraday efficiency."

Jones et al. [4] have confirmed the Shkedi et al. findings with the same conclusion:

"Faradaic efficiencies less than 100% during electrolysis of water can account for reports of excess heat in 'cold fusion' cells." [2]

Related Research Articles

Cold fusion Hypothetical type of nuclear reaction

Cold fusion is a hypothesized type of nuclear reaction that would occur at, or near, room temperature. It would contrast starkly with the "hot" fusion that is known to take place naturally within stars and artificially in hydrogen bombs and prototype fusion reactors under immense pressure and at temperatures of millions of degrees, and be distinguished from muon-catalyzed fusion. There is currently no accepted theoretical model that would allow cold fusion to occur.

Electrochemistry Branch of chemistry

Electrochemistry is the branch of physical chemistry that studies the relationship between electricity, as a measurable and quantitative phenomenon, and identifiable chemical change, with either electricity considered an outcome of a particular chemical change or vice versa. These reactions involve electric charges moving between electrodes and an electrolyte. Thus electrochemistry deals with the interaction between electrical energy and chemical change.

Electrochemical cell Device capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions

An electrochemical cell is a device capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions. The electrochemical cells which generate an electric current are called voltaic cells or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells. A common example of a galvanic cell is a standard 1.5 volt cell meant for consumer use. A battery consists of one or more cells, connected in parallel, series or series-and-parallel pattern.

Electrolysis technique that uses a direct electric current to drive an otherwise non-spontaneous chemical reaction

In chemistry and manufacturing, electrolysis is a technique that uses a direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential.

Calorimeter instrument for measuring heat

A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types. A simple calorimeter just consists of a thermometer attached to a metal container full of water suspended above a combustion chamber. It is one of the measurement devices used in the study of thermodynamics, chemistry, and biochemistry.

Electrolytic cell

An electrolytic cell uses electrical energy to drive a non-spontaneous redox reaction. An electrolytic cell is a kind of electrochemical cell. It is often used to decompose chemical compounds, in a process called electrolysis—the Greek word lysis means to break up. Important examples of electrolysis are the decomposition of water into hydrogen and oxygen, and bauxite into aluminium and other chemicals. Electroplating is done using an electrolytic cell. Electrolysis is a technique that uses a direct electric current (DC).

A regenerative fuel cell or reverse fuel cell (RFC) is a fuel cell run in reverse mode, which consumes electricity and chemical B to produce chemical A. By definition, the process of any fuel cell could be reversed. However, a given device is usually optimized for operating in one mode and may not be built in such a way that it can be operated backwards. Standard fuel cells operated backwards generally do not make very efficient systems unless they are purpose-built to do so as with high-pressure electrolysers, regenerative fuel cells, solid-oxide electrolyser cells and unitized regenerative fuel cells.

High-temperature electrolysis Technique for producing hydrogen from water

High-temperature electrolysis is a technology for producing hydrogen from water at high temperatures.

Electrolysis of water Decomposition of water into oxygen and hydrogen gas due to the passage of an electric current

Electrolysis of water is the decomposition of water into oxygen and hydrogen gas due to the passage of an electric current.

In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly related to a cell's voltage efficiency. In an electrolytic cell the existence of overpotential implies the cell requires more energy than thermodynamically expected to drive a reaction. In a galvanic cell the existence of overpotential means less energy is recovered than thermodynamics predicts. In each case the extra/missing energy is lost as heat. The quantity of overpotential is specific to each cell design and varies across cells and operational conditions, even for the same reaction. Overpotential is experimentally determined by measuring the potential at which a given current density is achieved.

Voltameter

A voltameter or coulometer is a scientific instrument used for measuring quantity of electricity through electrolytic action. The SI unit of quantity of electricity is the coulomb.

Hydrogen production is the family of industrial methods for generating hydrogen gas. As of 2020, the majority of hydrogen (∼95%) is produced from fossil fuels by steam reforming of natural gas, partial oxidation of methane, and coal gasification. Other methods of hydrogen production include biomass gasification and electrolysis of water.

The Patterson power cell is an electrolysis device invented by chemist James A. Patterson, which he said created 200 times more energy than it used, and neutralize radioactivity without emitting any harmful radiation. It is one of several cells that some observers classified as cold fusion; cells which were the subject of an intense scientific controversy in 1989, before being discredited in the eyes of mainstream science.

Faraday efficiency describes the efficiency with which charge (electrons) is transferred in a system facilitating an electrochemical reaction. The word "Faraday" in this term has two interrelated aspects. First, the historic unit for charge is the faraday, but has since been replaced by the coulomb. Secondly, the related Faraday's constant correlates charge with moles of matter and electrons. This phenomenon was originally understood through Michael Faraday's work and expressed in his laws of electrolysis.

Timeline of hydrogen technologies

This is a timeline of the history of hydrogen technology.

Bulk electrolysis is also known as potentiostatic coulometry or controlled potential coulometry. The experiment is a form of coulometry which generally employs a three electrode system controlled by a potentiostat. In the experiment the working electrode is held at a constant potential (volts) and current (amps) is monitored over time (seconds). In a properly run experiment an analyte is quantitatively converted from its original oxidation state to a new oxidation state, either reduced or oxidized. As the substrate is consumed, the current also decreases, approaching zero when the conversion nears completion.

Solid oxide electrolyzer cell Type of fuel cell

A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas and oxygen. The production of pure hydrogen is compelling because it is a clean fuel that can be stored easily, thus making it a potential alternative to batteries, which have a low storage capacity and create high amounts of waste materials. Electrolysis is currently the most promising method of hydrogen production from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods.

Electrocatalyst

An electrocatalyst is a catalyst that participates in electrochemical reactions. Catalyst materials modify and increase the rate of chemical reactions without being consumed in the process. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or may be the electrode surface itself. An electrocatalyst can be heterogeneous such as a platinum surface or nanoparticles, or homogeneous like a coordination complex or enzyme. The electrocatalyst assists in transferring electrons between the electrode and reactants, and/or facilitates an intermediate chemical transformation described by an overall half-reaction.

Polymer electrolyte membrane electrolysis Polymer electrolyte membrane electrolysis

Polymer electrolyte membrane(PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low current density, and low pressure operation currently plaguing the alkaline electrolyzer. It involves a proton-exchange membrane.

Pulse electrolysis

Pulse electrolysis is an alternate electrolysis method that utilises a pulsed direct current to initiate non-spontaneous chemical reactions. Also known as pulsed direct current (PDC) electrolysis, the increased number of variables that it introduces to the electrolysis method can change the application of the current to the electrodes and the resulting outcome. This varies from direct current (DC) electrolysis, which only allows the variation of one value, the voltage applied. By utilising conventional pulse width modulation (PMW), multiple dependent variables can be altered, including the type of waveform, typically a rectangular pulse wave, and the duty cycle, which determines the waveform frequency.

References

  1. "Archived copy". Archived from the original on 2008-02-23. Retrieved 2008-02-15.CS1 maint: archived copy as title (link)
  2. 1 2 3 Calorimetry, Excess Heat, and Faraday Efficiency in Ni-H2O Electrolytic Cells. Z. Shkedi, R.C. McDonald, J.J. Breen, S.J. Maguire, and J. Veranth, Fusion Technology Vol.28 No.4 (1995) p.1720-1731
  3. Response to "Comments on 'Calorimetry, Excess Heat, and Faraday Efficiency in Ni-H2O Electrolytic Cells' ". Shkedi Z., Fusion Technology Vol.30 (1996) p.133
  4. Faradaic efficiencies less than 100% during electrolysis of water can account for reports of excess heat in 'cold fusion' cells. J.E. Jones et al., J. Physical Chem. 99 (May 1995) p.6973-6979