Fast forward

Last updated
The icon matching fast forward in the open-source font Font Awesome Forward font awesome.svg
The icon matching fast forward in the open-source font Font Awesome

To fast-forward is to move forwards through a recording at a speed faster than that at which it would usually be played, for example two times or two point five times. The recordings are usually audio, video or computer data. It is colloquially known as 'f-forwarding'. On media control symbols, such as player buttons and interfaces, the function is commonly represented by two solid arrows pointing right and these typical icons were correctly recognised by 75% of a sample of European consumers. [1] This symbol is represented in Unicode as U+23E9.

Contents

Usage in audio

A VCR tape and player mechanism, showing the tape path in different modes. Magnetic video tape recorder diagram Us004809115-003.png
A VCR tape and player mechanism, showing the tape path in different modes.

To reach a certain portion of a song, a person may fast-forward through a cassette tape by pressing a button (often labeled "Fast Forward" itself) on the tape deck containing the tape. The tape deck's motor activates at a speed higher than usual—for example, double the standard 1-7/8 ips playing speed of the 1/8" cassette tape—and can be stopped by the end of the tape, the pressing of a "Stop" button on the deck (or another button mechanism disengaging the button), or simply lifting a finger from the "Fast Forward" button.

Fast-forwarding is the exact opposite of rewinding, in which tape, music, etc., are moved backward at a user's discretion. In either operation, because of sound distortion, volume is usually muted or severely reduced.

With the advent of inexpensive digital music media, fast-forwarding has most likely lost its past meaning related to the speed of a tape deck motor (or record turntable, or another device allowing fast-forwarding) and now may, especially as cassette tapes and other analogue media are used less and less by younger generations, only apply to the operation of moving ahead in a recording's time frame—accomplished today by simple clicking, dragging a slide image, or even via speech-recognition software. (Still, some CD and DVD players offer tape-style fast-forwarding, so that the user can detect when the destination is reached and stop.)

Usage in video

Analogue VCRs provided fast-forward by simply playing the tape faster. The resulting loss of synchronization of the video was accepted because it was still possible to make out approximately what was happening in the video to find the desired playback point. Modern digital video systems such as DVR and Video on Demand systems use 'trick mode' to present an apparently faster stream by only displaying selected frames.

Unlike analogue video streams in which only serial access is possible, digital video allows for random access to the media, which raises the possibility of alternative fast forwarding algorithms and visualizations. [2] In video streaming formats, such as H.264, fast forward algorithms use the I-frames to sample the video at faster than normal speed. [3] In streaming videos, fast-forward represents a useful search or browsing mechanism, but introduces extra network overhead when non-I-frames are transmitted in addition to the viewed I-frames and extra computational complexity in the video transcoder. Finding more network bandwidth-conserving and computationally efficient algorithms for accommodating both fast-forward and normal speed viewing is an active area of research. [3]

When fast-forwarding is used as a search mechanism (sometimes called a fast-forward video surrogate [4] ) in video libraries, the question arises as to what is perceptually the best fast-forward strategy for effective browsing. The main trade-off is between the fast-forward speed and the ability to understand the video. One study concluded that a 1:64 ratio surrogate (that is, show one frame out of every 64) allowed most participants to perform adequately on a range of tasks related to video understanding. [4]

Metaphorical uses

Fast-forwarding videotapes and similar is familiar enough for metaphorical uses to develop, e.g. "The court doesn't want to know about your aunt's bad hip. Fast-forward to when the fight started."

Related Research Articles

<span class="mw-page-title-main">Digital video</span> Digital electronic representation of moving visual images

Digital video is an electronic representation of moving visual images (video) in the form of encoded digital data. This is in contrast to analog video, which represents moving visual images in the form of analog signals. Digital video comprises a series of digital images displayed in rapid succession.

<span class="mw-page-title-main">VHS</span> Consumer-level analog videotape recording and cassette form standard

VHS is a standard for consumer-level analog video recording on tape cassettes.

<span class="mw-page-title-main">Cassette tape</span> Magnetic audio tape recording format

The Compact Cassette or Musicassette (MC), also commonly called the tape cassette, cassette tape, audio cassette, or simply tape or cassette, is an analog magnetic tape recording format for audio recording and playback. Invented by Lou Ottens and his team at the Dutch company Philips in 1963, Compact Cassettes come in two forms, either already containing content as a prerecorded cassette (Musicassette), or as a fully recordable "blank" cassette. Both forms have two sides and are reversible by the user. Although other tape cassette formats have also existed - for example the Microcassette - the generic term cassette tape is normally always used to refer to the Compact Cassette because of its ubiquity.

A cassette deck is a type of tape machine for playing and recording audio cassettes that does not have a built-in power amplifier or speakers, and serves primarily as a transport. It can be a part of an automotive entertainment system, a part of a portable mini system or a part of a home component system. In the latter case it is also called a component cassette deck or just a component deck.

<span class="mw-page-title-main">S-VHS</span> Improved version of VHS

S-VHS (スーパー・ヴィエイチエス), the common initialism for Super VHS, is an improved version of the VHS standard for consumer-level video recording. Victor Company of Japan introduced S-VHS in Japan in April 1987, with their JVC-branded HR-S7000 VCR, and in certain overseas markets soon afterward. By the end of 1987, the first S-VHS VCR models from other competitors included Hitachi VT-2700A, Mitsubishi HS-423UR, Panasonic PV-S4764, RCA VPT-695HF, and Toshiba SV-950.

<span class="mw-page-title-main">Betamax</span> Consumer-level analog video tape recording and cassette form factor standard

Betamax is a consumer-level analog recording and cassette format of magnetic tape for video, commonly known as a video cassette recorder. It was developed by Sony and was released in Japan on May 10, 1975, followed by the US in November of the same year.

<span class="mw-page-title-main">Digital Compact Cassette</span> Philips-developed system with digital audio on compact cassette

The Digital Compact Cassette (DCC) is a magnetic tape sound recording format introduced by Philips and Matsushita Electric in late 1992 and marketed as the successor to the standard analog Compact Cassette. It was also a direct competitor to Sony's MiniDisc (MD), but neither format toppled the then-ubiquitous analog cassette despite their technical superiority, and DCC was discontinued in October 1996.

Betacam is a family of half-inch professional videocassette products developed by Sony in 1982. In colloquial use, "Betacam" singly is often used to refer to a Betacam camcorder, a Betacam tape, a Betacam video recorder or the format itself.

<span class="mw-page-title-main">Video tape recorder</span> Tape recorder designed to record and play back video and audio material on magnetic tape

A video tape recorder (VTR) is a tape recorder designed to record and play back video and audio material from magnetic tape. The early VTRs were open-reel devices that record on individual reels of 2-inch-wide (5.08 cm) tape. They were used in television studios, serving as a replacement for motion picture film stock and making recording for television applications cheaper and quicker. Beginning in 1963, videotape machines made instant replay during televised sporting events possible. Improved formats, in which the tape was contained inside a videocassette, were introduced around 1969; the machines which play them are called videocassette recorders.

<span class="mw-page-title-main">Video Cassette Recording</span> Magnetic tape-based videocassette format

Video Cassette Recording (VCR) is an early domestic analog recording format designed by Philips. It was the first successful consumer-level home videocassette recorder (VCR) system. Later variants included the VCR-LP and Super Video (SVR) formats.

<span class="mw-page-title-main">8 mm video format</span> Magnetic tape-based videocassette format for camcorders

The 8mm video format refers informally to three related videocassette formats. These are the original Video8 format and its improved successor Hi8, as well as a more recent digital recording format known as Digital8. Their user base consisted mainly of amateur camcorder users, although they also saw important use in the professional television production field.

<span class="mw-page-title-main">VHS-C</span> Magnetic tape-based format

VHS-C is the compact VHS videocassette format, introduced by Victor Company of Japan (JVC) in 1982, and used primarily for consumer-grade compact analog recording camcorders. The format is based on the same video tape as is used in VHS, and can be played back in a standard VHS VCR with an adapter. Though quite inexpensive, the format is largely obsolete even as a consumer standard and has been replaced in the marketplace by digital video formats, which have smaller form factors.

<span class="mw-page-title-main">U-matic</span> Videocassette format; the first of its kind

U-matic is an analogue recording videocassette format first shown by Sony in prototype in October 1969, and introduced to the market in September 1971. It was among the first video formats to contain the videotape inside a cassette, as opposed to the various reel-to-reel or open-reel formats of the time. The videotape is 34 in (19 mm) wide, so the format is often known as "three-quarter-inch" or simply "three-quarter", compared to open reel videotape formats in use, such as 1 in (25 mm) type C videotape and 2 in (51 mm) quadruplex videotape.

<span class="mw-page-title-main">D-VHS</span> Magnetic tape-based format meant for the distribution of digital HD movies

D-VHS is a digital video recording format developed by JVC, in collaboration with Hitachi, Matsushita, and Philips. The "D" in D-VHS originally stood for "Data", but JVC renamed the format as "Digital VHS". Released in 1998, it uses the same physical cassette format and recording mechanism as S-VHS, but requires higher-quality and more expensive tapes and is capable of recording and displaying both standard-definition and high-definition content. The content data format is in MPEG transport stream, the same data format used for most digital television applications.

Since the widespread adoption of reel-to-reel audio tape recording in the 1950s, audio tapes and tape cassettes have been available in many formats. This article describes the length, tape thickness and playing times of some of the most common ones.

Peep Search is feature available on many videocassette recorders and most camcorders, whereby the unit can show you what is on the tape during rewind and fast forward operations. For this feature to work seamlessly, the tape must be fully laced up during rewind and fast-forward operation, which is not usually supported on VHS decks and therefore makes VHS almost the only video tape format where peep search is not usually available.

V-Cord is an analog recording videocassette format developed and released by Sanyo. V-Cord was released in 1974, and could record 60 minutes on a cassette. V-Cord II, released in 1976, could record 120 minutes on a V-Cord II cassette.

<span class="mw-page-title-main">Compact Video Cassette</span> Magnetic tape-based consumer videocassette format

Compact Video Cassette (CVC) was one of the first analog recording videocassette formats to use a tape smaller than its earlier predecessors of VHS and Betamax, and was developed by Funai Electronics of Japan for portable use. The first model of VCR for the format was the Model 212, introduced in 1980 by both Funai and Technicolor as they had created a joint venture to manufacture and introduce the format to the home movie market. The system, which included the VCR and a hand held video camera, was very small and lightweight for its time.

<span class="mw-page-title-main">Videocassette recorder</span> Device designed to record and playback content stored on videocassettes, most commonly VHS

A videocassette recorder (VCR) or video recorder is an electromechanical device that records analog audio and analog video from broadcast television or other source on a removable, magnetic tape videocassette, and can play back the recording. Use of a VCR to record a television program to play back at a more convenient time is commonly referred to as timeshifting. VCRs can also play back prerecorded tapes. In the 1980s and 1990s, prerecorded videotapes were widely available for purchase and rental, and blank tapes were sold to make recordings.

Trick mode or trick play is a feature of digital video systems, including digital video recorders and video on demand systems, that mimics the visual feedback given during fast-forward and rewind operations that were provided by analogue systems such as VCRs. Trick play manipulates the video stream to include only a subset of frames.

References

  1. "Study of VCR tape deck icon recognition", Contemporary Ergonomics, 1995, pp. 552–555, ISBN   9780748403288
  2. Divakaran, A.; Forlines, C.; Lanning, T.; Shipman, S.; Wittenburg, K. (2005). "Augmenting fast-forward and rewind for personal digital video recorders". 2005 Digest of Technical Papers. International Conference on Consumer Electronics, 2005. ICCE. pp. 43–44. doi:10.1109/ICCE.2005.1429708. ISBN   0-7803-8838-0. S2CID   8353543.
  3. 1 2 Lee, Tsz-Kwan; Fu, Chang-Hong; Chan, Yui-Lam; Siu, Wan-Chi (2010). "A new motion vector composition algorithm for fast-forward video playback in H.264". Proceedings of 2010 IEEE International Symposium on Circuits and Systems. pp. 3649–3652. doi:10.1109/ISCAS.2010.5537786. ISBN   978-1-4244-5308-5. S2CID   12723017.
  4. 1 2 Wildemuth, B.M.; Marchionini, G.; Meng Yang; Geisler, G.; Wilkens, T.; Hughes, A.; Gruss, R. (2003). "How fast is too fast? Evaluating fast forward surrogates for digital video". 2003 Joint Conference on Digital Libraries, 2003. Proceedings. pp. 221–230. doi:10.1109/JCDL.2003.1204866. ISBN   0-7695-1939-3. S2CID   12805027.