Fiber laser

Last updated

A fiber laser (or fibre laser in Commonwealth English) is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing.

Contents

Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing can also provide gain and thus serve as gain media for a fiber laser.[ citation needed ]

Characteristics

An advantage of fiber lasers over other types of lasers is that the laser light is both generated and delivered by an inherently flexible medium, which allows easier delivery to the focusing location and target. This can be important for laser cutting, welding, and folding of metals and polymers. Another advantage is high output power compared to other types of laser. Fiber lasers can have active regions several kilometers long, and so can provide very high optical gain. They can support kilowatt levels of continuous output power because of the fiber's high surface area to volume ratio, which allows efficient cooling. The fiber's waveguide properties reduce or eliminate thermal distortion of the optical path, typically producing a diffraction-limited, high-quality optical beam. Fiber lasers are compact compared to solid-state or gas lasers of comparable power, because the fiber can be bent and coiled, except in the case of thicker rod-type designs, to save space. They have lower cost of ownership. [1] [2] [3] Fiber lasers are reliable and exhibit high temperature and vibrational stability and extended lifetime. High peak power and nanosecond pulses improve marking and engraving. The additional power and better beam quality provide cleaner cut edges and faster cutting speeds. [4] [5]

Design and manufacture

Unlike most other types of lasers, the laser cavity in fiber lasers is constructed monolithically by fusion splicing different types of fiber; fiber Bragg gratings replace conventional dielectric mirrors to provide optical feedback. They may also be designed for single longitudinal mode operation of ultra-narrow distributed feedback lasers (DFB) where a phase-shifted Bragg grating overlaps the gain medium. Fiber lasers are pumped by semiconductor laser diodes or by other fiber lasers.

Double-clad fiber

Double-clad fiber RectaDFC.png
Double-clad fiber

Many high-power fiber lasers are based on double-clad fiber. The gain medium forms the core of the fiber, which is surrounded by two layers of cladding. The lasing mode propagates in the core, while a multimode pump beam propagates in the inner cladding layer. The outer cladding keeps this pump light confined. This arrangement allows the core to be pumped with a much higher-power beam than could otherwise be made to propagate in it, and allows the conversion of pump light with relatively low brightness into a much higher-brightness signal. There is an important question about the shape of the double-clad fiber; a fiber with circular symmetry seems to be the worst possible design. [6] [7] [8] [9] [10] [11] The design should allow the core to be small enough to support only a few (or even one) modes. It should provide sufficient cladding to confine the core and optical pump section over a relatively short piece of the fiber.

Tapered double-clad fiber (T-DCF) has tapered core and cladding which enables power scaling of amplifiers and lasers without thermal lensing mode instability. [12] [13]

Power scaling

Recent developments in fiber laser technology have led to a rapid and large rise in achieved diffraction-limited beam powers from diode-pumped solid-state lasers. Due to the introduction of large mode area (LMA) fibers as well as continuing advances in high power and high brightness diodes, continuous-wave single-transverse-mode powers from Yb-doped fiber lasers have increased from 100 W in 2001 to a combined beam fiber laser demonstrated power of 30 kW in 2014. [14]

High average power fiber lasers generally consist of a relatively low-power master oscillator, or seed laser, and power amplifier (MOPA) scheme. In amplifiers for ultrashort optical pulses, the optical peak intensities can become very high, so that detrimental nonlinear pulse distortion or even destruction of the gain medium or other optical elements may occur. This is generally avoided by employing chirped-pulse amplification (CPA). State of the art high-power fiber laser technologies using rod-type amplifiers have reached 1 kW with 260 fs pulses [15] and made outstanding progress and delivered practical solutions for the most of these problems.

However, despite the attractive characteristics of fiber lasers, several problems arise when power scaling. The most significant are thermal lensing and material resistance, nonlinear effects such as stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), mode instabilities, and poor output beam quality.

The main approach to solving the problems related to increasing the output power of pulses has been to increase the core diameter of the fiber. Special active fibers with large modes were developed to increase the surface-to-active-volume ratio of active fibers and, hence, improve heat dissipation enabling power scaling.

Moreover, specially developed double cladding structures have been used to reduce the brightness requirements of the high-power pump diodes by controlling pump propagation and absorption between the inner cladding and the core.

Several types of active fibers with a large effective mode area (LMA) have been developed for high power scaling including LMA fibers with a low-aperture core, [16] micro-structured rod-type fiber [15] [17] helical core [18] or chirally-coupled fibers, [19] and tapered double-clad fibers (T-DCF). [12] The mode field diameter (MFD) achieved with these low aperture technologies [15] [16] [17] [18] [19] usually does not exceed 20–30 μm. The micro-structured rod-type fiber has much larger MFD (up to 65 μm [20] ) and good performance. An impressive 2.2 mJ pulse energy was demonstrated by a femtosecond MOPA [21] containing large-pitch fibers (LPF). However, the shortcoming of amplification systems with LPF is their relatively long (up to 1.2 m) unbendable rod-type fibers meaning a rather bulky and cumbersome optical scheme. [21] LPF fabrication is highly complex requiring significant processing such as precision drilling of the fiber pre-forms.  The LPF fibers are highly sensitive to bending meaning robustness and portability is compromised.

Mode locking

In addition to the types of mode locking used with other lasers, fiber lasers can be passively mode locked by using the birefringence of the fiber itself. [22] The non-linear optical Kerr effect causes a change in polarization that varies with the light's intensity. This allows a polarizer in the laser cavity to act as a saturable absorber, blocking low-intensity light but allowing high intensity light to pass with little attenuation. This allows the laser to form mode-locked pulses, and then the non-linearity of the fiber further shapes each pulse into an ultra-short optical soliton pulse.

Semiconductor saturable-absorber mirrors (SESAMs) can also be used to mode lock fiber lasers. A major advantage SESAMs have over other saturable absorber techniques is that absorber parameters can be easily tailored to meet the needs of a particular laser design. For example, saturation fluence can be controlled by varying the reflectivity of the top reflector while modulation depth and recovery time can be tailored by changing the low temperature growing conditions for the absorber layers. This freedom of design has further extended the application of SESAMs into modelocking of fiber lasers where a relatively high modulation depth is needed to ensure self-starting and operation stability. Fiber lasers working at 1 µm and 1.5 µm were successfully demonstrated. [23] [24] [25] [26]

Graphene saturable absorbers have also been used for mode locking fiber lasers. [27] [28] [29] Graphene's saturable absorption is not very sensitive to wavelength, making it useful for mode locking tunable lasers.

Dark solitons

In the non-mode locking regime, a dark soliton fiber laser was successfully created using an all-normal dispersion erbium-doped fiber laser with a polarizer in-cavity. Experimental findings indicate that apart from the bright pulse emission, under appropriate conditions the fiber laser could also emit single or multiple dark pulses. Based on numerical simulations the dark pulse formation in the laser may be a result of dark soliton shaping. [30]

Multi-wavelength emission

Multi-wavelength emission in a fiber laser demonstrated simultaneous blue and green coherent light using ZBLAN optical fiber. The end-pumped laser was based on an upconversion optical gain media using a longer wavelength semiconductor laser to pump a Pr3+/Yb3+ doped fluoride fiber that used coated dielectric mirrors on each end of the fiber to form the cavity. [31]

Fiber disk lasers

Three fiber disk lasers FiberDiskLasers.jpg
Three fiber disk lasers

Another type of fiber laser is the fiber disk laser. In such lasers, the pump is not confined within the cladding of the fiber, but instead pump light is delivered across the core multiple times because it is coiled in on itself. This configuration is suitable for power scaling in which many pump sources are used around the periphery of the coil. [32] [33] [34] [35]

Applications

Applications of fiber lasers include material processing, telecommunications, spectroscopy, medicine, and directed energy weapons. [36]

See also

Related Research Articles

<span class="mw-page-title-main">Laser</span> Device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow.

<span class="mw-page-title-main">Optical amplifier</span> Device that amplifies an optical signal

An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from the cavity is suppressed. Optical amplifiers are important in optical communication and laser physics. They are used as optical repeaters in the long distance fiberoptic cables which carry much of the world's telecommunication links.

All-silica fiber, or silica-silica fiber, is an optical fiber whose core and cladding are made of silica glass. The refractive index of the core glass is higher than that of the cladding. These fibers are typically step-index fibers. The cladding of an all-silica fiber should not be confused with the polymer overcoat of the fiber.

Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example, in modern refractive surgery. The basis of the technique is to induce a fixed phase relationship between the longitudinal modes of the laser's resonant cavity. Constructive interference between these modes can cause the laser light to be produced as a train of pulses. The laser is then said to be "phase-locked" or "mode-locked".

<span class="mw-page-title-main">Ti-sapphire laser</span>

Ti:sapphire lasers (also known as Ti:Al2O3 lasers, titanium-sapphire lasers, or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses. Lasers based on Ti:sapphire were first constructed and invented in June 1982 by Peter Moulton at the MIT Lincoln Laboratory.

<span class="mw-page-title-main">Fiber Bragg grating</span> Type of distributed Bragg reflector constructed in a short segment of optical fiber

A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror. Hence a fiber Bragg grating can be used as an inline optical fiber to block certain wavelengths, can be used for sensing applications, or it can be used as wavelength-specific reflector.

<span class="mw-page-title-main">Solid-state laser</span> Laser which uses a solid gain medium

A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called laser diodes.

An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides.

<span class="mw-page-title-main">Double-clad fiber</span>

Double-clad fiber (DCF) is a class of optical fiber with a structure consisting of three layers of optical material instead of the usual two. The inner-most layer is called the core. It is surrounded by the inner cladding, which is surrounded by the outer cladding. The three layers are made of materials with different refractive indices.

<span class="mw-page-title-main">Frequency comb</span> Laser source with equal intervals of spectral energies

In optics, a frequency comb is a laser source whose spectrum consists of a series of discrete, equally spaced frequency lines. Frequency combs can be generated by a number of mechanisms, including periodic modulation of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a mode-locked laser. Much work has been devoted to this last mechanism, which was developed around the turn of the 21st century and ultimately led to one half of the Nobel Prize in Physics being shared by John L. Hall and Theodor W. Hänsch in 2005.

<span class="mw-page-title-main">Supercontinuum</span>

In optics, a supercontinuum is formed when a collection of nonlinear processes act together upon a pump beam in order to cause severe spectral broadening of the original pump beam, for example using a microstructured optical fiber. The result is a smooth spectral continuum. There is no consensus on how much broadening constitutes a supercontinuum; however researchers have published work claiming as little as 60 nm of broadening as a supercontinuum. There is also no agreement on the spectral flatness required to define the bandwidth of the source, with authors using anything from 5 dB to 40 dB or more. In addition the term supercontinuum itself did not gain widespread acceptance until this century, with many authors using alternative phrases to describe their continua during the 1970s, 1980s and 1990s.

Power scaling of a laser is increasing its output power without changing the geometry, shape, or principle of operation. Power scalability is considered an important advantage in a laser design. This means it can increase power without changing outside features.

In physics, a pulse is a generic term describing a single disturbance that moves through a transmission medium. This medium may be vacuum or matter, and may be indefinitely large or finite.

In physical optics or wave optics, a vector soliton is a solitary wave with multiple components coupled together that maintains its shape during propagation. Ordinary solitons maintain their shape but have effectively only one (scalar) polarization component, while vector solitons have two distinct polarization components. Among all the types of solitons, optical vector solitons draw the most attention due to their wide range of applications, particularly in generating ultrafast pulses and light control technology. Optical vector solitons can be classified into temporal vector solitons and spatial vector solitons. During the propagation of both temporal solitons and spatial solitons, despite being in a medium with birefringence, the orthogonal polarizations can copropagate as one unit without splitting due to the strong cross-phase modulation and coherent energy exchange between the two polarizations of the vector soliton which may induce intensity differences between these two polarizations. Thus vector solitons are no longer linearly polarized but rather elliptically polarized.

<span class="mw-page-title-main">Optical rogue waves</span>

Optical rogue waves are rare pulses of light analogous to rogue or freak ocean waves. The term optical rogue waves was coined to describe rare pulses of broadband light arising during the process of supercontinuum generation—a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input waveform—in nonlinear optical fiber. In this context, optical rogue waves are characterized by an anomalous surplus in energy at particular wavelengths or an unexpected peak power. These anomalous events have been shown to follow heavy-tailed statistics, also known as L-shaped statistics, fat-tailed statistics, or extreme-value statistics. These probability distributions are characterized by long tails: large outliers occur rarely, yet much more frequently than expected from Gaussian statistics and intuition. Such distributions also describe the probabilities of freak ocean waves and various phenomena in both the man-made and natural worlds. Despite their infrequency, rare events wield significant influence in many systems. Aside from the statistical similarities, light waves traveling in optical fibers are known to obey the similar mathematics as water waves traveling in the open ocean, supporting the analogy between oceanic rogue waves and their optical counterparts. More generally, research has exposed a number of different analogies between extreme events in optics and hydrodynamic systems. A key practical difference is that most optical experiments can be done with a table-top apparatus, offer a high degree of experimental control, and allow data to be acquired extremely rapidly. Consequently, optical rogue waves are attractive for experimental and theoretical research and have become a highly studied phenomenon. The particulars of the analogy between extreme waves in optics and hydrodynamics may vary depending on the context, but the existence of rare events and extreme statistics in wave-related phenomena are common ground.

An erbium-doped waveguide amplifier is a type of an optical amplifier enhanced with erbium. It is a close relative of an EDFA, erbium-doped fiber amplifier, and in fact EDWA's basic operating principles are identical to those of the EDFA. Both of them can be used to amplify infrared light at wavelengths in optical communication bands between 1500 and 1600 nm. However, whereas an EDFA is made using a free-standing fiber, an EDWA is typically produced on a planar substrate, sometimes in ways that are very similar to the methods used in electronic integrated circuit manufacturing. Therefore, the main advantage of EDWAs over EDFAs lies in their potential to be intimately integrated with other optical components on the same planar substrate and thus making EDFAs unnecessary.

<span class="mw-page-title-main">Tapered double-clad fiber</span>

A tapered double-clad fiber (T-DCF) is a double-clad optical fiber which is formed using a specialised fiber drawing process, in which temperature and pulling forces are controlled to form a taper along the length of the fiber. By using pre-clad fiber preforms both the fiber core and the inner and outer cladding layers vary in diameter and thickness along the full length of the fiber. This tapering of the fiber enables the combination of the characteristics of conventional 8–10 µm diameter double-clad single-mode fibers to propagate light in fundamental mode with those of larger diameter (50–100 µm) double-clad multi-mode fibers used for optical amplification and lasing. The result is improved maintenance of pulse fidelity compared to conventional consistent diameter fiber amplifiers. By virtue of the large cladding diameter T-DCF can be pumped by optical sources with very poor brightness factor such as laser diode bars or even VECSELs matrices, significantly reducing the cost of fiber lasers/amplifiers.

Semiconductor saturable-absorber mirrors (SESAMs) are a type of saturable absorber used in mode locking lasers.

<span class="mw-page-title-main">Baruch Fischer</span> Israeli professor of electro-optics

Baruch Fischer is an Israeli optical physicist and Professor Emeritus in the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering of the Technion, where he was the Max Knoll Chair in Electro-Optics and Electronics.

Masataka Nakazawa is a Japanese researcher in optical communication engineering. He is a distinguished professor at Tohoku University in Japan. His pioneering work on erbium-doped fiber amplifier (EDFA) has made a significant contribution to the development of global long-distance, high-capacity optical fiber network.

References

  1. "Growing adoption of laser cutting machine market in the US through 2021, due to the need for superior-quality products: Technavio". Business Wire. Feb 2, 2017. Retrieved 2020-02-08.
  2. Shiner, Bill (Feb 1, 2016). "Fiber lasers continue to gain market share in material processing applications". SME.org. Retrieved 2020-02-08.
  3. Shiner, Bill (Feb 1, 2006). "High-power fiber lasers gain market share". Industrial Laser Solutions for Manufacturing. Retrieved 2020-02-08.
  4. Zervas, Michalis N.; Codemard, Christophe A. (September 2014). "High Power Fiber Lasers: A Review". IEEE Journal of Selected Topics in Quantum Electronics. 20 (5): 219–241. Bibcode:2014IJSTQ..20..219Z. doi:10.1109/JSTQE.2014.2321279. ISSN   1077-260X. S2CID   36779372.
  5. Phillips, Katherine C.; Gandhi, Hemi H.; Mazur, Eric; Sundaram, S. K. (Dec 31, 2015). "Ultrafast laser processing of materials: a review". Advances in Optics and Photonics. 7 (4): 684–712. Bibcode:2015AdOP....7..684P. doi:10.1364/AOP.7.000684. ISSN   1943-8206.
  6. S. Bedö; W. Lüthy; H. P. Weber (1993). "The effective absorption coefficient in double-clad fibers". Optics Communications . 99 (5–6): 331–335. Bibcode:1993OptCo..99..331B. doi:10.1016/0030-4018(93)90338-6.
  7. A. Liu; K. Ueda (1996). "The absorption characteristics of circular, offset, and rectangular double-clad fibers". Optics Communications . 132 (5–6): 511–518. Bibcode:1996OptCo.132..511A. doi:10.1016/0030-4018(96)00368-9.
  8. Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption in double-clad fiber amplifiers. 2: Broken circular symmetry". JOSA B . 39 (6): 1259–1263. Bibcode:2002JOSAB..19.1259K. doi:10.1364/JOSAB.19.001259.
  9. Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption in double-clad fiber amplifiers.3:Calculation of modes". JOSA B . 19 (6): 1304–1309. Bibcode:2002JOSAB..19.1304K. doi:10.1364/JOSAB.19.001304.
  10. Leproux, P.; S. Fevrier; V. Doya; P. Roy; D. Pagnoux (2003). "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of pump". Optical Fiber Technology . 7 (4): 324–339. Bibcode:2001OptFT...7..324L. doi:10.1006/ofte.2001.0361.
  11. D.Kouznetsov; J.Moloney (2004). "Boundary behaviour of modes of a Dirichlet Laplacian". Journal of Modern Optics . 51 (13): 1362–3044. Bibcode:2004JMOp...51.1955K. doi:10.1080/09500340408232504. S2CID   209833904.
  12. 1 2 Filippov, V.; Chamorovskii, Yu; Kerttula, J.; Golant, K.; Pessa, M.; Okhotnikov, O. G. (2008-02-04). "Double clad tapered fiber for high power applications". Optics Express. 16 (3): 1929–1944. Bibcode:2008OExpr..16.1929F. doi: 10.1364/OE.16.001929 . ISSN   1094-4087. PMID   18542272.
  13. Filippov, Valery; Kerttula, Juho; Chamorovskii, Yuri; Golant, Konstantin; Okhotnikov, Oleg G. (2010-06-07). "Highly efficient 750 W tapered double-clad ytterbium fiber laser". Optics Express. 18 (12): 12499–12512. Bibcode:2010OExpr..1812499F. doi: 10.1364/OE.18.012499 . ISSN   1094-4087. PMID   20588376.
  14. "Many lasers become one in Lockheed Martin's 30kW fiber laser". Gizmag.com. 3 February 2014. Retrieved 2014-02-04.
  15. 1 2 3 Müller, Michael; Kienel, Marco; Klenke, Arno; Gottschall, Thomas; Shestaev, Evgeny; Plötner, Marco; Limpert, Jens; Tünnermann, Andreas (2016-08-01). "1 kW 1 mJ eight-channel ultrafast fiber laser". Optics Letters. 41 (15): 3439–3442. arXiv: 2101.08498 . Bibcode:2016OptL...41.3439M. doi:10.1364/OL.41.003439. ISSN   1539-4794. PMID   27472588. S2CID   11678581.
  16. 1 2 Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew (2000-04-01). "Single-mode operation of a coiled multimode fiber amplifier". Optics Letters. 25 (7): 442–444. Bibcode:2000OptL...25..442K. doi:10.1364/OL.25.000442. ISSN   1539-4794. PMID   18064073.
  17. 1 2 Limpert, J.; Deguil-Robin, N.; Manek-Hönninger, I.; Salin, F.; Röser, F.; Liem, A.; Schreiber, T.; Nolte, S.; Zellmer, H.; Tünnermann, A.; Broeng, J. (2005-02-21). "High-power rod-type photonic crystal fiber laser". Optics Express. 13 (4): 1055–1058. Bibcode:2005OExpr..13.1055L. doi: 10.1364/OPEX.13.001055 . ISSN   1094-4087. PMID   19494970.
  18. 1 2 Wang, P.; Cooper, L. J.; Sahu, J. K.; Clarkson, W. A. (2006-01-15). "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser". Optics Letters. 31 (2): 226–228. Bibcode:2006OptL...31..226W. doi:10.1364/OL.31.000226. ISSN   1539-4794. PMID   16441038.
  19. 1 2 Lefrancois, Simon; Sosnowski, Thomas S.; Liu, Chi-Hung; Galvanauskas, Almantas; Wise, Frank W. (2011-02-14). "Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber". Optics Express. 19 (4): 3464–3470. Bibcode:2011OExpr..19.3464L. doi:10.1364/OE.19.003464. ISSN   1094-4087. PMC   3135632 . PMID   21369169.
  20. "AEROGAIN-ROD HIGH POWER YTTERBIUM ROD FIBER GAIN MODULES" . Retrieved 14 January 2020.
  21. 1 2 Eidam, Tino; Rothhardt, Jan; Stutzki, Fabian; Jansen, Florian; Hädrich, Steffen; Carstens, Henning; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas (2011-01-03). "Fiber chirped-pulse amplification system emitting 3.8 GW peak power". Optics Express. 19 (1): 255–260. Bibcode:2011OExpr..19..255E. doi: 10.1364/OE.19.000255 . ISSN   1094-4087. PMID   21263564.
  22. Li N.; Xue J.; Ouyang C.; Wu K.; Wong J. H.; Aditya S.; Shum P. P. (2012). "Cavity-length optimization for high energy pulse generation in a long cavity passively mode-locked all-fiber ring laser". Applied Optics. 51 (17): 3726–3730. Bibcode:2012ApOpt..51.3726L. doi:10.1364/AO.51.003726. hdl: 10220/10097 . PMID   22695649.
  23. H. Zhang et al., "Induced solitons formed by cross polarization coupling in a birefringent cavity fiber laser" Archived 2011-07-07 at the Wayback Machine , Opt. Lett., 33, 23172319. (2008).
  24. D.Y. Tang et al., "Observation of high-order polarization-locked vector solitons in a fiber laser" Archived 2010-01-20 at the Wayback Machine , Physical Review Letters, 101, 153904 (2008).
  25. H. Zhang et al., "Coherent energy exchange between components of a vector soliton in fiber lasers", Optics Express, 16,1261812623 (2008).
  26. Zhang H.; et al. (2009). "Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser". Optics Express. 17 (2): 12692–12697. arXiv: 0907.1782 . Bibcode:2009OExpr..1712692Z. doi:10.1364/oe.17.012692. PMID   19654674. S2CID   1512526.
  27. Zhang, H; Tang, DY; Zhao, LM; Bao, QL; Loh, KP (28 September 2009). "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene". Optics Express. 17 (20): 17630–5. arXiv: 0909.5536 . Bibcode:2009OExpr..1717630Z. doi:10.1364/OE.17.017630. PMID   19907547. S2CID   207313024.
  28. Han Zhang; Qiaoliang Bao; Dingyuan Tang; Luming Zhao; Kianping Loh (2009). "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker" (PDF). Applied Physics Letters. 95 (14): P141103. arXiv: 0909.5540 . Bibcode:2009ApPhL..95n1103Z. doi:10.1063/1.3244206. S2CID   119284608. Archived from the original (PDF) on 2011-07-17.
  29. Archived February 19, 2012, at the Wayback Machine
  30. Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X. (27 October 2009). "Dark pulse emission of a fiber laser" (PDF). Physical Review A. 80 (4): 045803. arXiv: 0910.5799 . Bibcode:2009PhRvA..80d5803Z. doi:10.1103/PhysRevA.80.045803. S2CID   118581850. Archived from the original (PDF) on 2011-07-17.
  31. Baney, D. M., Rankin, G., Change, K. W. "Simultaneous blue and green upconversion lasing in a diode-pumped Pr3+/Yb3+ doped fluoride fiber laser,"Appl. Phys. Lett, vol. 69 No 12, pp. 1622-1624, Sept 1996.
  32. Ueda, Ken-ichi (1998). Kudryashov, Alexis V.; Galarneau, Pierre (eds.). "Optical cavity and future style of high-power fiber lasers". Proceedings. Laser Resonators. 3267 (Laser Resonators): 14–22. Bibcode:1998SPIE.3267...14U. doi:10.1117/12.308104. S2CID   136018975.
  33. K. Ueda (1999). "Scaling physics of disk-type fiber lasers for kW output". 1999 IEEE LEOS Annual Meeting Conference Proceedings. LEOS'99. 12th Annual Meeting. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No.99CH37009). pp. 788–789. doi:10.1109/leos.1999.811970. ISBN   978-0-7803-5634-4. S2CID   120732530.{{cite book}}: |journal= ignored (help)
  34. Ueda; Sekiguchi H.; Matsuoka Y.; Miyajima H.; H.Kan (1999). "Conceptual design of kW-class fiber-embedded disk and tube lasers". Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464). Vol. 2. Lasers and Electro-Optics Society 1999 12th Annual Meeting. LEOS '99. IEEE. pp. 217–218. doi:10.1109/CLEOPR.1999.811381. ISBN   978-0-7803-5661-0. S2CID   30251829.
  35. Hamamatsu Photonics K.K. Laser group (2006). "The Fiber Disk Laser explained". Nature Photonics. sample: 14–15. doi:10.1038/nphoton.2006.6.
  36. Popov, S. (2009). "7: Fiber laser overview and medical applications". In Duarte, F. J. (ed.). Tunable Laser Applications (2nd ed.). New York: CRC.