Fluid solution

Last updated

In general relativity, a fluid solution is an exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid.

Contents

In astrophysics, fluid solutions are often employed as stellar models. (It might help to think of a perfect gas as a special case of a perfect fluid.) In cosmology, fluid solutions are often used as cosmological models.

Mathematical definition

The stress–energy tensor of a relativistic fluid can be written in the form [1]

Here

The heat flux vector and viscous shear tensor are transverse to the world lines, in the sense that

This means that they are effectively three-dimensional quantities, and since the viscous stress tensor is symmetric and traceless, they have respectively three and five linearly independent components. Together with the density and pressure, this makes a total of 10 linearly independent components, which is the number of linearly independent components in a four-dimensional symmetric rank two tensor.

Special cases

Several special cases of fluid solutions are noteworthy (here speed of light c = 1):

The last two are often used as cosmological models for (respectively) matter-dominated and radiation-dominated epochs. Notice that while in general it requires ten functions to specify a fluid, a perfect fluid requires only two, and dusts and radiation fluids each require only one function. It is much easier to find such solutions than it is to find a general fluid solution.

Among the perfect fluids other than dusts or radiation fluids, by far the most important special case is that of the static spherically symmetric perfect fluid solutions. These can always be matched to a Schwarzschild vacuum across a spherical surface, so they can be used as interior solutions in a stellar model. In such models, the sphere where the fluid interior is matched to the vacuum exterior is the surface of the star, and the pressure must vanish in the limit as the radius approaches . However, the density can be nonzero in the limit from below, while of course it is zero in the limit from above. In recent years, several surprisingly simple schemes have been given for obtaining all these solutions.

Einstein tensor

The components of a tensor computed with respect to a frame field rather than the coordinate basis are often called physical components, because these are the components which can (in principle) be measured by an observer.

In the special case of a perfect fluid, an adapted frame

(the first is a timelike unit vector field, the last three are spacelike unit vector fields) can always be found in which the Einstein tensor takes the simple form

where is the energy density and is the pressure of the fluid. Here, the timelike unit vector field is everywhere tangent to the world lines of observers who are comoving with the fluid elements, so the density and pressure just mentioned are those measured by comoving observers. These are the same quantities which appear in the general coordinate basis expression given in the preceding section; to see this, just put . From the form of the physical components, it is easy to see that the isotropy group of any perfect fluid is isomorphic to the three dimensional Lie group SO(3), the ordinary rotation group.

The fact that these results are exactly the same for curved spacetimes as for hydrodynamics in flat Minkowski spacetime is an expression of the equivalence principle.

Eigenvalues

The characteristic polynomial of the Einstein tensor in a perfect fluid must have the form

where are again the density and pressure of the fluid as measured by observers comoving with the fluid elements. (Notice that these quantities can vary within the fluid.) Writing this out and applying Gröbner basis methods to simplify the resulting algebraic relations, we find that the coefficients of the characteristic must satisfy the following two algebraically independent (and invariant) conditions:

But according to Newton's identities, the traces of the powers of the Einstein tensor are related to these coefficients as follows:

so we can rewrite the above two quantities entirely in terms of the traces of the powers. These are obviously scalar invariants, and they must vanish identically in the case of a perfect fluid solution:

Notice that this assumes nothing about any possible equation of state relating the pressure and density of the fluid; we assume only that we have one simple and one triple eigenvalue.

In the case of a dust solution (vanishing pressure), these conditions simplify considerably:

or

In tensor gymnastics notation, this can be written using the Ricci scalar as:

In the case of a radiation fluid, the criteria become

or

In using these criteria, one must be careful to ensure that the largest eigenvalue belongs to a timelike eigenvector, since there are Lorentzian manifolds, satisfying this eigenvalue criterion, in which the large eigenvalue belongs to a spacelike eigenvector, and these cannot represent radiation fluids.

The coefficients of the characteristic will often appear very complicated, and the traces are not much better; when looking for solutions it is almost always better to compute components of the Einstein tensor with respect to a suitably adapted frame and then to kill appropriate combinations of components directly. However, when no adapted frame is evident, these eigenvalue criteria can be sometimes be useful, especially when employed in conjunction with other considerations.

These criteria can often be useful for spot checking alleged perfect fluid solutions, in which case the coefficients of the characteristic are often much simpler than they would be for a simpler imperfect fluid.

Examples

Noteworthy individual dust solutions are listed in the article on dust solutions. Noteworthy perfect fluid solutions which feature positive pressure include various radiation fluid models from cosmology, including

In addition to the family of static spherically symmetric perfect fluids, noteworthy rotating fluid solutions include

See also

Related Research Articles

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

<span class="mw-page-title-main">Einstein field equations</span> Field-equations in general relativity

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

A classical field theory is a physical theory that predicts how one or more physical fields interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

<span class="mw-page-title-main">Mathematics of general relativity</span> Mathematical structures and techniques used in the theory of general relativity

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In mathematical physics, a null dust solution is a Lorentzian manifold in which the Einstein tensor is null. Such a spacetime can be interpreted as an exact solution of Einstein's field equation, in which the only mass–energy present in the spacetime is due to some kind of massless radiation.

Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.

<span class="mw-page-title-main">Gödel metric</span> Solution of Einstein field equations

The Gödel metric, also known as the Gödel solution or Gödel universe, is an exact solution of the Einstein field equations in which the stress–energy tensor contains two terms, the first representing the matter density of a homogeneous distribution of swirling dust particles, and the second associated with a negative cosmological constant.

In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.

A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.

In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass-energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) source-free Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) Einstein-Maxwell solutions.

In general relativity, a lambdavacuum solution is an exact solution to the Einstein field equation in which the only term in the stress–energy tensor is a cosmological constant term. This can be interpreted physically as a kind of classical approximation to a nonzero vacuum energy. These are discussed here as distinct from the vacuum solutions in which the cosmological constant is vanishing.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

van Stockum dust

In general relativity, the van Stockum dust is an exact solution of the Einstein field equation in which the gravitational field is generated by dust rotating about an axis of cylindrical symmetry. Since the density of the dust is increasing with distance from this axis, the solution is rather artificial, but as one of the simplest known solutions in general relativity, it stands as a pedagogically important example.

In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter.

<span class="mw-page-title-main">Dust solution</span> Class of exact solutions to Einsteins field equations

In general relativity, a dust solution is a fluid solution, a type of exact solution of the Einstein field equation, in which the gravitational field is produced entirely by the mass, momentum, and stress density of a perfect fluid that has positive mass density but vanishing pressure. Dust solutions are an important special case of fluid solutions in general relativity.

In astrophysics, the Tolman–Oppenheimer–Volkoff (TOV) equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modelled by general relativity. The equation is

Newton–Cartan theory is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by Dautcourt, Dixon, Dombrowski and Horneffer, Ehlers, Havas, Künzle, Lottermoser, Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.

In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".

The Optical Metric was defined by German theoretical physicist Walter Gordon in 1923 to study the geometrical optics in curved space-time filled with moving dielectric materials. Let ua be the normalized (covariant) 4-velocity of the arbitrarily-moving dielectric medium filling the space-time, and assume that the fluid’s electromagnetic properties are linear, isotropic, transparent, nondispersive, and can be summarized by two scalar functions: a dielectric permittivity ε and a magnetic permeability μ. Then optical metric tensor is defined as

References

  1. Eckart, Carl (1940). "The Thermodynamics of Irreversible Processes III. Relativistic Theory of the Simple Fluid". Phys. Rev. 58 (10): 919. Bibcode:1940PhRv...58..919E. doi:10.1103/PhysRev.58.919.