This article needs additional citations for verification .(December 2009) |
In mathematics, the L-functions of number theory are expected to have several characteristic properties, one of which is that they satisfy certain functional equations . There is an elaborate theory of what these equations should be, much of which is still conjectural.
A prototypical example, the Riemann zeta function has a functional equation relating its value at the complex number s with its value at 1 −s. In every case this relates to some value ζ(s) that is only defined by analytic continuation from the infinite series definition. That is, writing –as is conventional –σ for the real part of s, the functional equation relates the cases
and also changes a case with
in the critical strip to another such case, reflected in the line σ = ½. Therefore, use of the functional equation is basic, in order to study the zeta-function in the whole complex plane.
The functional equation in question for the Riemann zeta function takes the simple form
where Z(s) is ζ(s) multiplied by a gamma-factor, involving the gamma function. This is now read as an 'extra' factor in the Euler product for the zeta-function, corresponding to the infinite prime. Just the same shape of functional equation holds for the Dedekind zeta function of a number field K, with an appropriate gamma-factor that depends only on the embeddings of K (in algebraic terms, on the tensor product of K with the real field).
There is a similar equation for the Dirichlet L-functions, but this time relating them in pairs: [1]
with χ a primitive Dirichlet character, χ* its complex conjugate, Λ the L-function multiplied by a gamma-factor, and ε a complex number of absolute value 1, of shape
where G(χ) is a Gauss sum formed from χ. This equation has the same function on both sides if and only if χ is a real character, taking values in {0,1,−1}. Then ε must be 1 or −1, and the case of the value −1 would imply a zero of Λ(s) at s = ½. According to the theory (of Gauss, in effect) of Gauss sums, the value is always 1, so no such simple zero can exist (the function is even about the point).
A unified theory of such functional equations was given by Erich Hecke, and the theory was taken up again in Tate's thesis by John Tate. Hecke found generalised characters of number fields, now called Hecke characters, for which his proof (based on theta functions) also worked. These characters and their associated L-functions are now understood to be strictly related to complex multiplication, as the Dirichlet characters are to cyclotomic fields.
There are also functional equations for the local zeta-functions, arising at a fundamental level for the (analogue of) Poincaré duality in étale cohomology. The Euler products of the Hasse–Weil zeta-function for an algebraic variety V over a number field K, formed by reducing modulo prime ideals to get local zeta-functions, are conjectured to have a global functional equation; but this is currently considered out of reach except in special cases. The definition can be read directly out of étale cohomology theory, again; but in general some assumption coming from automorphic representation theory seems required to get the functional equation. The Taniyama–Shimura conjecture was a particular case of this as general theory. By relating the gamma-factor aspect to Hodge theory, and detailed studies of the expected ε factor, the theory as empirical has been brought to quite a refined state, even if proofs are missing.
The Riemann zeta function or Euler–Riemann zeta function, ζ(s), is a mathematical function of a complex variable s, and can be expressed as:
The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.
In mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and one important conjecture involving L-functions is the Riemann hypothesis and its generalization.
In mathematics, a Dirichlet series is any series of the form
In mathematics, a Dirichlet L-series is a function of the form
In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, ... by
In mathematics, in the area of number theory, a Gaussian period is a certain kind of sum of roots of unity. The periods permit explicit calculations in cyclotomic fields connected with Galois theory and with harmonic analysis. They are basic in the classical theory called cyclotomy. Closely related is the Gauss sum, a type of exponential sum which is a linear combination of periods.
In mathematics, the Chowla–Mordell theorem is a result in number theory determining cases where a Gauss sum is the square root of a prime number, multiplied by a root of unity. It was proved and published independently by Sarvadaman Chowla and Louis Mordell, around 1951.
In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function. It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.
In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeroes of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near to s = 1.
In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions. Although the exact nature of the class is conjectural, the hope is that the definition of the class will lead to a classification of its contents and an elucidation of its properties, including insight into their relationship to automorphic forms and the Riemann hypothesis. The class was defined by Atle Selberg in, who preferred not to use the word "axiom" that later authors have employed.
In mathematics, an Artin L-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin L-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis.
In number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function.
In mathematics, a Jacobi sum is a type of character sum formed with Dirichlet characters. Simple examples would be Jacobi sums J(χ, ψ) for Dirichlet characters χ, ψ modulo a prime number p, defined by
In number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of L-functions larger than Dirichlet L-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function.
In algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically
The Hasse–Davenport relations, introduced by Davenport and Hasse (1935), are two related identities for Gauss sums, one called the Hasse–Davenport lifting relation, and the other called the Hasse–Davenport product relation. The Hasse–Davenport lifting relation is an equality in number theory relating Gauss sums over different fields. Weil (1949) used it to calculate the zeta function of a Fermat hypersurface over a finite field, which motivated the Weil conjectures.
In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann (1859), after whom it is named.
In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well behaved.
In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when { and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.