Generalised circle

Last updated

In geometry, a generalized circle, sometimes called a cline or circline, [1] is a straight line or a circle, the curves of constant curvature in the Euclidean plane.

Contents

The natural setting for generalized circles is the extended plane, a plane along with one point at infinity through which every straight line is considered to pass. Given any three distinct points in the extended plane, there exists precisely one generalized circle passing through all three.

Generalized circles sometimes appear in Euclidean geometry, which has a well-defined notion of distance between points, and where every circle has a center and radius: the point at infinity can be considered infinitely distant from any other point, and a line can be considered as a degenerate circle without a well-defined center and with infinite radius (zero curvature). A reflection across a line is a Euclidean isometry (distance-preserving transformation) which maps lines to lines and circles to circles; but an inversion in a circle is not, distorting distances and mapping any line to a circle passing through the reference circles's center, and vice-versa.

However, generalized circles are fundamental to inversive geometry, in which circles and lines are considered indistinguishable, the point at infinity is not distinguished from any other point, and the notions of curvature and distance between points are ignored. In inversive geometry, reflections, inversions, and more generally their compositions, called Möbius transformations, map generalized circles to generalized circles, and preserve the inversive relationships between objects.

The extended plane can be identified with the sphere using a stereographic projection. The point at infinity then becomes an ordinary point on the sphere, and all generalized circles become circles on the sphere.

Extended complex plane

A circle in the complex plane specified as an implicit equation in terms of center and radius Circle in the complex plane.png
A circle in the complex plane specified as an implicit equation in terms of center and radius

The extended Euclidean plane can be identified with the extended complex plane, so that equations of complex numbers can be used to describe lines, circles and inversions.

Bivariate linear equation

A circle is the set of points in a plane that lie at radius from a center point

In the complex plane, is a complex number and is a set of complex numbers. Using the property that a complex number multiplied by its conjugate is the square of its modulus (its Euclidean distance from the origin), an implicit equation for is:

This is a homogeneous bivariate linear polynomial equation in terms of the complex variable and its conjugate of the form

where coefficients and are real, and and are complex conjugates.

By dividing by and then reversing the steps above, the radius and center can be recovered from any equation of this form. The equation represents a generalized circle in the plane when is real, which occurs when so that the squared radius is positive. When is zero, the equation defines a straight line.

Complex reciprocal

That the reciprocal transformation maps generalized circles to generalized circles is straight-forward to verify:

Lines through the origin () map to lines through the origin; lines not through the origin () map to circles through the origin; circles through the origin () map to lines not through the origin; and circles not through the origin () map to circles not through the origin.

Complex matrix representation

The defining equation of a generalized circle

can be written as a matrix equation

Symbolically,

with coefficients placed into an invertible hermitian matrix representing the circle, and a vector representing an extended complex number.

Two such matrices specify the same generalized circle if and only if one is a scalar multiple of the other.

To transform the generalized circle represented by by the Möbius transformation apply the inverse of the Möbius transformation to the vector in the implicit equation,

so the new circle can be represented by the matrix

Notes

  1. Hitchman, Michael P. (2009). Geometry with an Introduction to Cosmic Topology. Jones & Bartlett. p. 43.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<i>n</i>-sphere Generalized sphere of dimension n (mathematics)

In mathematics, an n-sphere or hypersphere is an n-dimensional generalization of the 1-dimensional circle and 2-dimensional sphere to any non-negative integer n. The n-sphere is the setting for n-dimensional spherical geometry.

<span class="mw-page-title-main">Curvature</span> Mathematical measure of how much a curve or surface deviates from flatness

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.

<span class="mw-page-title-main">Winding number</span> Number of times a curve wraps around a point in the plane

In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that curve travels counterclockwise around the point, i.e., the curve's number of turns. For certain open plane curves, the number of turns may be non-integer. The winding number depends on the orientation of the curve, and it is negative if the curve travels around the point clockwise.

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, a modular form is a (complex) analytic function on the upper half-plane, , that satisfies:

In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.

In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus.

<span class="mw-page-title-main">Barycentric coordinate system</span> Coordinate system that is defined by points instead of vectors

In geometry, a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex. The barycentric coordinates of a point can be interpreted as masses placed at the vertices of the simplex, such that the point is the center of mass of these masses. These masses can be zero or negative; they are all positive if and only if the point is inside the simplex.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.

<span class="mw-page-title-main">Differential geometry of surfaces</span> The mathematics of smooth surfaces

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

<span class="mw-page-title-main">Gyrovector space</span> Mathematical space used to study hyperbolic geometry

A gyrovector space is a mathematical concept proposed by Abraham A. Ungar for studying hyperbolic geometry in analogy to the way vector spaces are used in Euclidean geometry. Ungar introduced the concept of gyrovectors that have addition based on gyrogroups instead of vectors which have addition based on groups. Ungar developed his concept as a tool for the formulation of special relativity as an alternative to the use of Lorentz transformations to represent compositions of velocities. This is achieved by introducing "gyro operators"; two 3d velocity vectors are used to construct an operator, which acts on another 3d velocity.

In mathematics, the classical Möbius plane is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry.

References