Genetic use restriction technology

Last updated
Plants such as an infertile cotton strain have been made in laboratories using GURT. Cotton boll nearly ready for harvest.jpg
Plants such as an infertile cotton strain have been made in laboratories using GURT.

Genetic use restriction technology (GURT), also known as terminator technology or suicide seeds, is designed to restrict access to "genetic materials and their associated phenotypic traits." [2] The technology works by activating (or deactivating) specific genes using a controlled stimulus in order to cause second generation seeds to be either infertile or to not have one or more of the desired traits of the first generation plant. [3] [4] GURTs can be used by agricultural firms to enhance protection of their innovations in genetically modified organisms by making it impossible for farmers to reproduce the desired traits on their own. [4] Another possible use is to prevent the escape of genes from genetically modified organisms into the surrounding environment. [5]

Contents

The technology was originally developed under a cooperative research and development agreement between the Agricultural Research Service of the United States Department of Agriculture and Delta & Pine Land Company in the 1990s. The purpose of the development was to protect the intellectual property of biotechnology firms that the United States Department of Agriculture viewed as being a specifically American technological competence. [6] The technology, while still being developed, is not yet commercially available due to the political and scientific controversies that accompanied its development. [7]

GURT was first reported on by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) to the UN Convention on Biological Diversity [3] and discussed during the 8th Conference of the Parties to the United Nations Convention on Biological Diversity in Curitiba, Brazil, March 20–31, 2006.

Process

A GURT process that uses biological signals to make enzymes that cut out the blocker sequence. GURT process diagram.png
A GURT process that uses biological signals to make enzymes that cut out the blocker sequence.

The GURT process is typically composed of four genetic components: a target gene, a promoter, a trait switch, and a genetic switch, sometimes with slightly different names given in different papers. [5] A typical GURT involves the engineering of a plant that has a target gene in its DNA that expresses when activated by a promoter gene. However, it is separated from the target gene by a blocker sequence that prevents the promoter from accessing the target. When the plant receives a given external input, a genetic switch in the plant takes the input, amplifies it, and converts it into a biological signal. When a trait switch receives the amplified signal, it creates an enzyme that cuts the blocker sequence out. With the blocker sequence eliminated, the promoter gene allows the target gene to express itself in the plant. [5] [8]

In other versions of the process, an operator must bind to the trait switch in order for it to make the enzymes that cut out the blocker sequence. However, there are repressors that bind to the trait switch and prevent it from doing so. In this case, when the external input is applied, the repressors bond to the input instead of to the trait switch, allowing the enzymes to be created that cut the blocker sequence, thereby allowing the trait to be expressed. [6]

Other GURTs embody alternative approaches, such as letting the genetic switch directly affect the blocker sequence and bypass the need for a trait switch. [6]

Variants

There are two broad categories of GURTs: Variety-specific genetic use restriction technologies (V-GURTs) and Trait specific genetic use restriction technologies (T-GURTs). [9] [10] The two variants have been described as follows [5] :

V-GURTs are designed to restrict the use of all genetic materials contained in an entire plant variety. Prior to being sold to growers, the seeds of V-GURTs are activated by the seed company. The seeds can germinate, and the plants grow and reproduce normally, but their offspring will be sterile... . Thus, farmers could not save seed from year-to-year to replant. In contrast, T-GURTs only restrict the use of particular traits conferred by a transgene, but seeds are fertile. Growers could replant seed from the previous harvest, but they would not contain the transgenic trait.

Variety specific GURTs or V-GURTs

Variety-specific genetic use restriction technologies destroy seed development and plant fertility by means of a "genetic process triggered by a chemical inducer that will allow the plant to grow and to form seeds, but will cause the embryo of each of those seeds to produce a cell toxin that will prevent its germination if replanted, thus causing second generation seeds to be sterile... ." [6] The toxin degrades the DNA or RNA of the plant. Thus, the seed from the crop is not viable and cannot not be used as seeds to produce subsequent crops, but only for sale as food or fodder. [7] [11]

Trait specific GURTs or T-GURTs

Trait specific genetic use restriction technologies modify a crop in such a way that the genetic enhancement engineered into the crop does not function until the plant is treated with a specific chemical. [7] [12] The chemical acts as the external input, activating the target gene. One difference in T-GURTs is the possibility that the gene could be toggled on and off with different chemical inputs, resulting in the same toggling on or off an associated trait. With T-GURTs, seeds could possibly be saved for planting with a condition that the new plants do not get any enhanced traits unless the external input is added.

Benefits and risks

GURTs have a number of potential uses, though they have not yet been used in commercial agricultural products available on the market or in pharmaceutical applications. [13] These uses include protection of intellectual property for biotechnological innovations, and bio-confinement (preventing escape of genetically engineered genes into nature).

Intellectual property protection

The original aim of the developers of GURTs was the protection of intellectual property in agricultural biotechnology. That is, the developers sought to prevent farmers from reusing patented seeds in cases where patents for biological innovations did not exist or could not be easily enforced. [7] This problem is not generally posed for farmers using hybrid seeds (which, in any case, are not fertile or do not breed true) and, thus, could not be used to grow subsequent crops. However, the V-GURTS make it impossible for farmers to use seeds they have produced to grow crops in subsequent seasons because the entire genome of the targeted cells is destroyed. The T-GURTs could be used by seed companies to allow for the commercialisation of seeds that are fertile, but that develop into plants with desired traits only when sprayed with an activator chemical sold by the company. [12]

Bio-confinement

An ongoing fear raised by GURTs and other biotechnologies is that the genes of genetically modified plants might escape into nature via sexual reproduction with compatible wild plants or with other cultivated plants. This is known as 'transgene escape' and is among the highest priority risks posed by genetic engineering of plants. [4] This risk of escape is one of the reasons that the GURT process has not yet been used in commercial applications (indeed, the main producing companies have vowed to not commercialise these products, though they still have related research programs). Ironically, in a way, GURTs, themselves a process for the genetic modification of plants, may also be used to secure the 'bio-confinement' of the transgenes of genetically modified plants. GURTs, because they control plant fertility in various ways, could be used to prevent the escape of transgenes into wild relatives and help reduce risks of deleterious impacts on biodiversity. For bio-confinement, both "V- and T GURTs could be targeted to reproductive tissues, most typically pollen and seed (or embryo)." [5] Crops modified to produce non-food products (eg. in pharmacology, therapeutic proteins, monoclonal antibodies and vaccines) could be armed with GURTs to prevent accidental transmission of these traits into crops meant for foods. [7]

Other uses

Another possible advantage is that non-viable seeds produced on V-GURT plants may reduce the propagation of volunteer plants. Volunteer plants can become an economic problem for larger-scale mechanized farming systems that incorporate crop rotation. [7] Furthermore, under warm, wet harvest conditions non V-GURT grain can sprout, lowering the quality of grain produced. It is likely that this problem would not occur with the use of V-GURT grain varieties. [7]

Another proposed use is in synthetic biology, where a restricted activator chemical must be added to the fermentation medium to produce a desired output chemical. [14]

Controversy

As of 2006, GURT seeds have not been commercialized anywhere in the world due to opposition from farmers, consumers, indigenous peoples, NGOs, and some governments. Using the technology, companies that manufacture genetic use restriction technologies could potentially be able to make much more revenue because the seeds sold would not be able to be resown. V-GURTs would not have an immediate impact on the many farmers who use hybrid seeds, as they do not produce their own planting seeds, and instead buy specialized hybrid seeds from seed production companies. However, approximately 80 percent of farmers in Brazil and Pakistan grow crops using seeds saved from previous harvests. [11] Another concern is that farmers purchasing the seeds would be greatly impacted, given they would have to buy new seeds every year. It has been argued that this would result in higher prices in food. [15]

Some have expressed the concern that GURT seeds might cause a significant decrease in biodiversity and threaten native species of plants. [16] [17] However, proponents of the technology dispute these claims, arguing that because non-GMO hybrid plants are used in the same way and GURT seeds could help farmers deal with cross pollination, the benefits outweigh the potential negatives. [18]

In 2000, the United Nations Convention on Biological Diversity recommended a de facto moratorium on field-testing and commercial sale of terminator seeds; the moratorium was re-affirmed and the language strengthened in March 2006, at the COP8 meeting of the UNCBD. [19] Specifically, the moratorium recommended that, due to a lack of research on the technology's potential risks, no field testing of GURTs nor products using them should be allowed until there was a sufficiently justified reason to do so. India and Brazil have passed national laws to prohibit the technology. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Biotechnology</span> Use of living systems and organisms to develop or make useful products

Biotechnology is a multidisciplinary field that involves the integration of natural sciences and engineering sciences in order to achieve the application of organisms and parts thereof for products and services.

<span class="mw-page-title-main">Genetically modified maize</span> Genetically modified crop

Genetically modified maize (corn) is a genetically modified crop. Specific maize strains have been genetically engineered to express agriculturally-desirable traits, including resistance to pests and to herbicides. Maize strains with both traits are now in use in multiple countries. GM maize has also caused controversy with respect to possible health effects, impact on other insects and impact on other plants via gene flow. One strain, called Starlink, was approved only for animal feed in the US but was found in food, leading to a series of recalls starting in 2000.

<span class="mw-page-title-main">Genetically modified organism</span> Organisms whose genetic material has been altered using genetic engineering methods

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), including animals, plants, and microorganisms.

<span class="mw-page-title-main">Genetic engineering</span> Manipulation of an organisms genome

Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms.

Agricultural biotechnology, also known as agritech, is an area of agricultural science involving the use of scientific tools and techniques, including genetic engineering, molecular markers, molecular diagnostics, vaccines, and tissue culture, to modify living organisms: plants, animals, and microorganisms. Crop biotechnology is one aspect of agricultural biotechnology which has been greatly developed upon in recent times. Desired trait are exported from a particular species of Crop to an entirely different species. These transgene crops possess desirable characteristics in terms of flavor, color of flowers, growth rate, size of harvested products and resistance to diseases and pests.

<span class="mw-page-title-main">Genetically modified food</span> Foods produced from organisms that have had changes introduced into their DNA

Genetically modified foods, also known as genetically engineered foods, or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using various methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.

Pharming, a portmanteau of farming and pharmaceutical, refers to the use of genetic engineering to insert genes that code for useful pharmaceuticals into host animals or plants that would otherwise not express those genes, thus creating a genetically modified organism (GMO). Pharming is also known as molecular farming, molecular pharming, or biopharming.

<i>Monsanto Canada Inc v Schmeiser</i> Supreme Court of Canada decision

Monsanto Canada Inc v Schmeiser [2004] 1 S.C.R. 902, 2004 SCC 34 is a leading Supreme Court of Canada case on patent rights for biotechnology, between a Canadian canola farmer, Percy Schmeiser, and the agricultural biotechnology company Monsanto. The court heard the question of whether Schmeiser's intentionally growing genetically modified plants constituted "use" of Monsanto's patented genetically modified plant cells. By a 5-4 majority, the court ruled that it did. The Supreme Court also ruled 9-0 that Schmeiser did not have to pay Monsanto their technology use fee, damages or costs, as Schmeiser did not receive any benefit from the technology. The case drew worldwide attention and is widely misunderstood to concern what happens when farmers' fields are accidentally contaminated with patented seed. However, by the time the case went to trial, all claims of accidental contamination had been dropped; the court only considered the GM canola in Schmeiser's fields, which Schmeiser had intentionally concentrated and planted. Schmeiser did not put forward any defence of accidental contamination.

<span class="mw-page-title-main">Genetically modified crops</span> Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the phenotype of an organism. Transgene describes a segment of DNA containing a gene sequence that has been isolated from one organism and is introduced into a different organism. This non-native segment of DNA may either retain the ability to produce RNA or protein in the transgenic organism or alter the normal function of the transgenic organism's genetic code. In general, the DNA is incorporated into the organism's germ line. For example, in higher vertebrates this can be accomplished by injecting the foreign DNA into the nucleus of a fertilized ovum. This technique is routinely used to introduce human disease genes or other genes of interest into strains of laboratory mice to study the function or pathology involved with that particular gene.

Since the advent of genetic engineering in the 1970s, concerns have been raised about the dangers of the technology. Laws, regulations, and treaties were created in the years following to contain genetically modified organisms and prevent their escape. Nevertheless, there are several examples of failure to keep GM crops separate from conventional ones.

<span class="mw-page-title-main">Genetically modified food controversies</span>

Genetically modified food controversies are disputes over the use of foods and other goods derived from genetically modified crops instead of conventional crops, and other uses of genetic engineering in food production. The disputes involve consumers, farmers, biotechnology companies, governmental regulators, non-governmental organizations, and scientists. The key areas of controversy related to genetically modified food are whether such food should be labeled, the role of government regulators, the objectivity of scientific research and publication, the effect of genetically modified crops on health and the environment, the effect on pesticide resistance, the impact of such crops for farmers, and the role of the crops in feeding the world population. In addition, products derived from GMO organisms play a role in the production of ethanol fuels and pharmaceuticals.

The detection of genetically modified organisms in food or feed is possible by biochemical means. It can either be qualitative, showing which genetically modified organism (GMO) is present, or quantitative, measuring in which amount a certain GMO is present. Being able to detect a GMO is an important part of GMO labeling, as without detection methods the traceability of GMOs would rely solely on documentation.

<span class="mw-page-title-main">Transplastomic plant</span>

A transplastomic plant is a genetically modified plant in which genes are inactivated, modified or new foreign genes are inserted into the DNA of plastids like the chloroplast instead of nuclear DNA.

<span class="mw-page-title-main">Genetic pollution</span> Problematic gene flow into wild populations

Genetic pollution is a term for uncontrolled gene flow into wild populations. It is defined as "the dispersal of contaminated altered genes from genetically engineered organisms to natural organisms, esp. by cross-pollination", but has come to be used in some broader ways. It is related to the population genetics concept of gene flow, and genetic rescue, which is genetic material intentionally introduced to increase the fitness of a population. It is called genetic pollution when it negatively impacts the fitness of a population, such as through outbreeding depression and the introduction of unwanted phenotypes which can lead to extinction.

The United States is the largest grower of commercial crops that have been genetically engineered in the world, but not without domestic and international opposition.

<span class="mw-page-title-main">Genetically modified rice</span>

Genetically modified rice are rice strains that have been genetically modified. Rice plants have been modified to increase micronutrients such as vitamin A, accelerate photosynthesis, tolerate herbicides, resist pests, increase grain size, generate nutrients, flavors or produce human proteins.

<span class="mw-page-title-main">History of genetic engineering</span>

Genetic engineering is the science of manipulating genetic material of an organism. The first artificial genetic modification accomplished using biotechnology was transgenesis, the process of transferring genes from one organism to another, first accomplished by Herbert Boyer and Stanley Cohen in 1973. It was the result of a series of advancements in techniques that allowed the direct modification of the genome. Important advances included the discovery of restriction enzymes and DNA ligases, the ability to design plasmids and technologies like polymerase chain reaction and sequencing. Transformation of the DNA into a host organism was accomplished with the invention of biolistics, Agrobacterium-mediated recombination and microinjection. The first genetically modified animal was a mouse created in 1974 by Rudolf Jaenisch. In 1976 the technology was commercialised, with the advent of genetically modified bacteria that produced somatostatin, followed by insulin in 1978. In 1983 an antibiotic resistant gene was inserted into tobacco, leading to the first genetically engineered plant. Advances followed that allowed scientists to manipulate and add genes to a variety of different organisms and induce a range of different effects. Plants were first commercialized with virus resistant tobacco released in China in 1992. The first genetically modified food was the Flavr Savr tomato marketed in 1994. By 2010, 29 countries had planted commercialized biotech crops. In 2000 a paper published in Science introduced golden rice, the first food developed with increased nutrient value.

<span class="mw-page-title-main">Genetic engineering techniques</span> Methods used to change the DNA of organisms

Genetic engineering techniques allow the modification of animal and plant genomes. Techniques have been devised to insert, delete, and modify DNA at multiple levels, ranging from a specific base pair in a specific gene to entire genes. There are a number of steps that are followed before a genetically modified organism (GMO) is created. Genetic engineers must first choose what gene they wish to insert, modify, or delete. The gene must then be isolated and incorporated, along with other genetic elements, into a suitable vector. This vector is then used to insert the gene into the host genome, creating a transgenic or edited organism.

<span class="mw-page-title-main">Genetically modified tree</span> Tree whose DNA has been modified using genetic engineering techniques

A genetically modified tree is a tree whose DNA has been modified using genetic engineering techniques. In most cases the aim is to introduce a novel trait to the plant which does not occur naturally within the species. Examples include resistance to certain pests, diseases, environmental conditions, and herbicide tolerance, or the alteration of lignin levels in order to reduce pulping costs.

References

  1. "Terminator Genes: Here's another fine mess biotechnology has gotten us into". Discover. 1 August 2003. Retrieved 11 December 2018.
  2. Van Acker, Rene C; Szumgalski, Anthony R; Friesen, Lyle F (2007-10-01). "The potential benefits, risks and costs of genetic use restriction technologies". Canadian Journal of Plant Science. 87 (4): 753–762. doi:10.4141/CJPS06033. ISSN   0008-4220.
  3. 1 2 A., Jefferson, Richard; Don, Byth; Carlos, Correa; Gerardo, Otero; Calvin, Qualset (1999-04-30). "Genetic use restriction technologies". Zenodo. doi:10.5281/zenodo.1477499.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 3 Eaton, D.J.F.; van Tongeren, Dr. F.W. (March 2002). "Genetic use restriction technologies (GURTs): Potential economic impacts at national and international levels" . Retrieved 18 October 2018.
  5. 1 2 3 4 5 Yi Sang Reginald J. Millwood C. Neal Stewart Jr. "Gene use restriction technologies for transgenic plant bioconfinement" 04 June 2013
  6. 1 2 3 4 Luca Lombardo. "Genetic use restriction technologies: a review" 17 July 2014
  7. 1 2 3 4 5 6 7 www.worldseed.org, International Seed Federation. "Genetic Use Restriction Technologies (Bangalore, June 2003)" (PDF). (Position Paper Supporting V-GURT development)
  8. "GMOs and Patents: Part 1 - Terminator Genes". www.biofortified.org. 9 December 2015. Retrieved 19 October 2018.
  9. Patrick Heffer. Biotechnology: a modern tool for food production improvement in Seed Policy and Programmes for the Central and Eastern European Countries, Commonwealth of Independent States and Other Countries in Transition. FAO Plant Production and Protection Paper 168. Food and Agriculture Organization of the United Nations, 2001
  10. Jefferson RA et al. Genetic Use Restriction Technologies Archived 2014-02-05 at the Wayback Machine : Technical Assessment of the Set of New Technologies which Sterilize or Reduce the Agronomic Value of Second Generation Seed, as Exemplified by U.S. Patent No. 5,723,765, and WO 94/03619. Expert paper, prepared for the Secretariat on 30 April 1999
  11. 1 2 3 Haider Rizvi, "BIODIVERSITY: Don't Sell "Suicide Seeds", Activists Warn", Inter Press Service News Agency, March 21, 2006
  12. 1 2 "Genetic Use Restriction Technologies (GURTs)". 2007-05-04. Retrieved October 17, 2018
  13. "What's the controversy over 'terminator' seeds?". Genetic Literacy Project. Retrieved 2024-05-23.
  14. Ledford, Heidi (February 2013). "Seed-patent case in Supreme Court". Nature. 494 (7437): 289–290. Bibcode:2013Natur.494..289L. doi: 10.1038/494289a . PMID   23426299. S2CID   4327585.
  15. "An Ethical Examination of Genetic Use Restriction Technologies" (PDF). November 20, 2008. Retrieved June 6, 2018.
  16. "Women are on the frontlines of a 'race against time' to save native seeds | Intercontinental Cry". intercontinentalcry.org. Retrieved October 17, 2018.
  17. Shiva, Vandana; Emani, Ashok; Jafri, Afsar H. (1999). "Globalisation and Threat to Seed Security: Case of Transgenic Cotton Trials in India". Economic and Political Weekly. 34 (10/11): 601–613. ISSN   0012-9976. JSTOR   4407732.
  18. "The Myth and Reality of Terminator Seeds". fafdl.org. 19 November 2016. Archived from the original on 16 May 2019. Retrieved October 17, 2018.
  19. "Moratorium". Ban Terminator. Archived from the original on 16 December 2013. Retrieved 12 December 2013.