Global anomaly

Last updated

In theoretical physics, a global anomaly is a type of anomaly: in this particular case, it is a quantum effect that invalidates a large gauge transformation that would otherwise be preserved in the classical theory. This leads to an inconsistency in the theory because the space of configurations which is being integrated over in the functional integral involves both a configuration and the same configuration after a large gauge transformation has acted upon it and the sum of all such contributions is zero and the space of configurations cannot be split into connected components for which the integral is nonzero.

Alternatively, the existence of a global anomaly implies that the measure of Feynman's functional integral cannot be defined globally.

The adjective "global" refers to the properties of a group that are detectable via large gauge or diffeomorphism transformations, but are not detectable locally via infinitesimal transformations. For example, all features of a discrete group (as opposed to a Lie group) are global in character.

A famous example is an SU(2) Yang–Mills theory in 4D with an odd number of chiral fermions in the fundamental representation 2 or the isospin 1/2 of SU(2), transforming as doublets under SU(2). This is known as the Witten SU(2) anomaly. [1]

Another new but much more subtle example is found in 2018, also for the SU(2) gauge theory in 4D, with an odd number of chiral fermions in the representation 4 or the isospin 3/2 of SU(2). This is known as the new SU(2) anomaly. [2] The new SU(2) anomaly has an important application to rule out the existence of any global anomaly for the SO(10) grand unified theory. This new anomaly is a mixed gauge-gravitational anomaly and a nonperturbative global anomaly. [2] [3]

Many types of global anomalies must cancel for a theory to be consistent. An example is modular invariance, the requirement of anomaly cancellation for a part of a gravitational anomaly that deals with the large diffeomorphisms over two dimensional worldsheets of genus 1 or more.

Related Research Articles

<span class="mw-page-title-main">Grand Unified Theory</span> Any particle physics model that theorizes the merging of the electromagnetic, weak and strong forces

In particle physics, a Grand Unified Theory (GUT) is a model in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this unified force has not been directly observed, many GUT models theorize its existence. If the unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct.

<span class="mw-page-title-main">Spin network</span> Diagram used to represent quantum field theory calculations

In physics, a spin network is a type of diagram which can be used to represent states and interactions between particles and fields in quantum mechanics. From a mathematical perspective, the diagrams are a concise way to represent multilinear functions and functions between representations of matrix groups. The diagrammatic notation can thus greatly simplify calculations.

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa.

<span class="mw-page-title-main">Anomaly (physics)</span> Asymmetry of classical and quantum action

In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken at the limit of vanishing viscosity.

The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form.

<span class="mw-page-title-main">Nathan Seiberg</span>

Nathan "Nati" Seiberg is an Israeli American theoretical physicist who works on quantum field theory and string theory. He is currently a professor at the Institute for Advanced Study in Princeton, New Jersey, United States.

<span class="mw-page-title-main">Gravitational anomaly</span> Breakdown of general covariance at the quantum level

In theoretical physics, a gravitational anomaly is an example of a gauge anomaly: it is an effect of quantum mechanics — usually a one-loop diagram—that invalidates the general covariance of a theory of general relativity combined with some other fields. The adjective "gravitational" is derived from the symmetry of a gravitational theory, namely from general covariance. A gravitational anomaly is generally synonymous with diffeomorphism anomaly, since general covariance is symmetry under coordinate reparametrization; i.e. diffeomorphism.

In the Standard Model of electroweak interactions of particle physics, the weak hypercharge is a quantum number relating the electric charge and the third component of weak isospin. It is frequently denoted and corresponds to the gauge symmetry U(1).

In lattice field theory, fermion doubling occurs when naively putting fermionic fields on a lattice, resulting in more fermionic states than expected. For the naively discretized Dirac fermions in Euclidean dimensions, each fermionic field results in identical fermion species, referred to as different tastes of the fermion. The fermion doubling problem is intractably linked to chiral invariance by the Nielsen–Ninomiya theorem. Most strategies used to solve the problem require using modified fermions which reduce to the Dirac fermion only in the continuum limit.

<span class="mw-page-title-main">SO(10)</span>

In particle physics, SO(10) refers to a grand unified theory (GUT) based on the spin group Spin(10). The shortened name SO(10) is conventional among physicists, and derives from the Lie algebra or less precisely the Lie group of SO(10), which is a special orthogonal group that is double covered by Spin(10).

In quantum field theory, Seiberg duality, conjectured by Nathan Seiberg in 1994, is an S-duality relating two different supersymmetric QCDs. The two theories are not identical, but they agree at low energies. More precisely under a renormalization group flow they flow to the same IR fixed point, and so are in the same universality class. It is an extension to nonabelian gauge theories with N=1 supersymmetry of Montonen–Olive duality in N=4 theories and electromagnetic duality in abelian theories.

Sterile neutrinos are hypothetical particles that are believed to interact only via gravity and not via any of the other fundamental interactions of the Standard Model. The term sterile neutrino is used to distinguish them from the known, ordinary active neutrinos in the Standard Model, which carry an isospin charge of ±+1/ 2  and engage in the weak interaction. The term typically refers to neutrinos with right-handed chirality, which may be inserted into the Standard Model. Particles that possess the quantum numbers of sterile neutrinos and masses great enough such that they do not interfere with the current theory of Big Bang nucleosynthesis are often called neutral heavy leptons (NHLs) or heavy neutral leptons (HNLs).

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

In particle physics, chiral symmetry breaking is the spontaneous symmetry breaking of a chiral symmetry – usually by a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction. Yoichiro Nambu was awarded the 2008 Nobel prize in physics for describing this phenomenon.

<span class="mw-page-title-main">String-net liquid</span> Condensed matter physics model involving only closed loops

In condensed matter physics, a string-net is an extended object whose collective behavior has been proposed as a physical mechanism for topological order by Michael A. Levin and Xiao-Gang Wen. A particular string-net model may involve only closed loops; or networks of oriented, labeled strings obeying branching rules given by some gauge group; or still more general networks.

In quantum field theory, the anomaly matching condition by Gerard 't Hooft states that the calculation of any chiral anomaly for the flavor symmetry must not depend on what scale is chosen for the calculation if it is done by using the degrees of freedom of the theory at some energy scale. It is also known as the 't Hooft condition and the 't Hooft UV-IR anomaly matching condition.

<span class="mw-page-title-main">Gauge theory</span> Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian does not change under local transformations according to certain smooth families of operations.

In quantum many-body physics, topological degeneracy is a phenomenon in which the ground state of a gapped many-body Hamiltonian becomes degenerate in the limit of large system size such that the degeneracy cannot be lifted by any local perturbations.

References

  1. Witten, Edward (November 1982). "An SU(2) Anomaly". Phys. Lett. B. 117 (5): 324. Bibcode:1982PhLB..117..324W. doi:10.1016/0370-2693(82)90728-6.
  2. 1 2 Wang, Juven; Wen, Xiao-Gang; Witten, Edward (May 2019). "A New SU(2) Anomaly". Journal of Mathematical Physics. 60 (5): 052301. arXiv: 1810.00844 . Bibcode:2019JMP....60e2301W. doi:10.1063/1.5082852. ISSN   1089-7658. S2CID   85543591.
  3. Wang, Juven; Wen, Xiao-Gang (1 June 2020). "Nonperturbative definition of the standard models". Physical Review Research. 2 (2): 023356. arXiv: 1809.11171 . Bibcode:2018arXiv180911171W. doi:10.1103/PhysRevResearch.2.023356. ISSN   2469-9896. S2CID   53346597.