Gluing axiom

Last updated

In mathematics, the gluing axiom is introduced to define what a sheaf on a topological space must satisfy, given that it is a presheaf, which is by definition a contravariant functor

Contents

to a category which initially one takes to be the category of sets. Here is the partial order of open sets of ordered by inclusion maps; and considered as a category in the standard way, with a unique morphism

if is a subset of , and none otherwise.

As phrased in the sheaf article, there is a certain axiom that must satisfy, for any open cover of an open set of . For example, given open sets and with union and intersection , the required condition is that

is the subset of With equal image in

In less formal language, a section of over is equally well given by a pair of sections : on and respectively, which 'agree' in the sense that and have a common image in under the respective restriction maps

and

.

The first major hurdle in sheaf theory is to see that this gluing or patching axiom is a correct abstraction from the usual idea in geometric situations. For example, a vector field is a section of a tangent bundle on a smooth manifold; this says that a vector field on the union of two open sets is (no more and no less than) vector fields on the two sets that agree where they overlap.

Given this basic understanding, there are further issues in the theory, and some will be addressed here. A different direction is that of the Grothendieck topology, and yet another is the logical status of 'local existence' (see Kripke–Joyal semantics).

Removing restrictions on C

To rephrase this definition in a way that will work in any category that has sufficient structure, we note that we can write the objects and morphisms involved in the definition above in a diagram which we will call (G), for "gluing":

Here the first map is the product of the restriction maps

and each pair of arrows represents the two restrictions

and

.

It is worthwhile to note that these maps exhaust all of the possible restriction maps among , the , and the .

The condition for to be a sheaf is that for any open set and any collection of open sets whose union is , the diagram (G) above is an equalizer.

One way of understanding the gluing axiom is to notice that is the colimit of the following diagram:

The gluing axiom says that turns colimits of such diagrams into limits.

Sheaves on a basis of open sets

In some categories, it is possible to construct a sheaf by specifying only some of its sections. Specifically, let be a topological space with basis . We can define a category O(X) to be the full subcategory of whose objects are the . A B-sheaf on with values in is a contravariant functor

which satisfies the gluing axiom for sets in . That is, on a selection of open sets of , specifies all of the sections of a sheaf, and on the other open sets, it is undetermined.

B-sheaves are equivalent to sheaves (that is, the category of sheaves is equivalent to the category of B-sheaves). [1] Clearly a sheaf on can be restricted to a B-sheaf. In the other direction, given a B-sheaf we must determine the sections of on the other objects of . To do this, note that for each open set , we can find a collection whose union is . Categorically speaking, this choice makes the colimit of the full subcategory of whose objects are . Since is contravariant, we define to be the limit of the with respect to the restriction maps. (Here we must assume that this limit exists in .) If is a basic open set, then is a terminal object of the above subcategory of , and hence . Therefore, extends to a presheaf on . It can be verified that is a sheaf, essentially because every element of every open cover of is a union of basis elements (by the definition of a basis), and every pairwise intersection of elements in an open cover of is a union of basis elements (again by the definition of a basis).

The logic of C

The first needs of sheaf theory were for sheaves of abelian groups; so taking the category as the category of abelian groups was only natural. In applications to geometry, for example complex manifolds and algebraic geometry, the idea of a sheaf of local rings is central. This, however, is not quite the same thing; one speaks instead of a locally ringed space, because it is not true, except in trite cases, that such a sheaf is a functor into a category of local rings. It is the stalks of the sheaf that are local rings, not the collections of sections (which are rings, but in general are not close to being local). We can think of a locally ringed space as a parametrised family of local rings, depending on in .

A more careful discussion dispels any mystery here. One can speak freely of a sheaf of abelian groups, or rings, because those are algebraic structures (defined, if one insists, by an explicit signature). Any category having finite products supports the idea of a group object, which some prefer just to call a group in. In the case of this kind of purely algebraic structure, we can talk either of a sheaf having values in the category of abelian groups, or an abelian group in the category of sheaves of sets; it really doesn't matter.

In the local ring case, it does matter. At a foundational level we must use the second style of definition, to describe what a local ring means in a category. This is a logical matter: axioms for a local ring require use of existential quantification, in the form that for any in the ring, one of and is invertible. This allows one to specify what a 'local ring in a category' should be, in the case that the category supports enough structure.

Sheafification

To turn a given presheaf into a sheaf , there is a standard device called sheafification or sheaving. The rough intuition of what one should do, at least for a presheaf of sets, is to introduce an equivalence relation, which makes equivalent data given by different covers on the overlaps by refining the covers. One approach is therefore to go to the stalks and recover the sheaf space of the best possible sheaf produced from .

This use of language strongly suggests that we are dealing here with adjoint functors. Therefore, it makes sense to observe that the sheaves on form a full subcategory of the presheaves on . Implicit in that is the statement that a morphism of sheaves is nothing more than a natural transformation of the sheaves, considered as functors. Therefore, we get an abstract characterisation of sheafification as left adjoint to the inclusion. In some applications, naturally, one does need a description.

In more abstract language, the sheaves on form a reflective subcategory of the presheaves (Mac Lane–Moerdijk Sheaves in Geometry and Logic p. 86). In topos theory, for a Lawvere–Tierney topology and its sheaves, there is an analogous result (ibid. p. 227).

Other gluing axioms

The gluing axiom of sheaf theory is rather general. One can note that the Mayer–Vietoris axiom of homotopy theory, for example, is a special case.

See also

Notes

Related Research Articles

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper.

In mathematics, injective sheaves of abelian groups are used to construct the resolutions needed to define sheaf cohomology.

In the branch of mathematics called homological algebra, a t-structure is a way to axiomatize the properties of an abelian subcategory of a derived category. A t-structure on consists of two subcategories of a triangulated category or stable infinity category which abstract the idea of complexes whose cohomology vanishes in positive, respectively negative, degrees. There can be many distinct t-structures on the same category, and the interplay between these structures has implications for algebra and geometry. The notion of a t-structure arose in the work of Beilinson, Bernstein, Deligne, and Gabber on perverse sheaves.

In mathematics, the constant sheaf on a topological space associated to a set is a sheaf of sets on whose stalks are all equal to . It is denoted by or . The constant presheaf with value is the presheaf that assigns to each open subset of the value , and all of whose restriction maps are the identity map . The constant sheaf associated to is the sheafification of the constant presheaf associated to . This sheaf identifies with the sheaf of locally constant -valued functions on .

In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: XY, we can define a new sheaf fF on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of fF is given by the global sections of F. This assignment gives rise to a functor f from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.

In category theory, a branch of mathematics, a presheaf on a category is a functor . If is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space.

In mathematics, the Leray spectral sequence was a pioneering example in homological algebra, introduced in 1946 by Jean Leray. It is usually seen nowadays as a special case of the Grothendieck spectral sequence.

In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Alexander Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use.

In mathematics, specifically in algebraic topology and algebraic geometry, an inverse image functor is a contravariant construction of sheaves; here “contravariant” in the sense given a map , the inverse image functor is a functor from the category of sheaves on Y to the category of sheaves on X. The direct image functor is the primary operation on sheaves, with the simplest definition. The inverse image exhibits some relatively subtle features.

The stalk of a sheaf is a mathematical construction capturing the behaviour of a sheaf around a given point.

In mathematics, and more specifically in homological algebra, a resolution is an exact sequence of modules, which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are non-zero; it is usually represented by a finite exact sequence in which the leftmost object or the rightmost object is the zero-object.

In mathematics, a Grothendieck category is a certain kind of abelian category, introduced in Alexander Grothendieck's Tôhoku paper of 1957 in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's seminal thesis in 1962.

In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site taking values in simplicial sets. Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).

References