Hahn embedding theorem

Last updated

In mathematics, especially in the area of abstract algebra dealing with ordered structures on abelian groups, the Hahn embedding theorem gives a simple description of all linearly ordered abelian groups. It is named after Hans Hahn. [1]

Contents

Overview

The theorem states that every linearly ordered abelian group G can be embedded as an ordered subgroup of the additive group ℝΩ endowed with a lexicographical order, where ℝ is the additive group of real numbers (with its standard order), Ω is the set of Archimedean equivalence classes of G, and ℝΩ is the set of all functions from Ω to ℝ which vanish outside a well-ordered set.

Let 0 denote the identity element of G. For any nonzero element g of G, exactly one of the elements g or g is greater than 0; denote this element by |g|. Two nonzero elements g and h of G are Archimedean equivalent if there exist natural numbers N and M such that N|g| > |h| and M|h| > |g|. Intuitively, this means that neither g nor h is "infinitesimal" with respect to the other. The group G is Archimedean if all nonzero elements are Archimedean-equivalent. In this case, Ω is a singleton, so ℝΩ is just the group of real numbers. Then Hahn's Embedding Theorem reduces to Hölder's theorem (which states that a linearly ordered abelian group is Archimedean if and only if it is a subgroup of the ordered additive group of the real numbers).

Gravett (1956) gives a clear statement and proof of the theorem. The papers of Clifford (1954) and Hausner & Wendel (1952) together provide another proof. See also Fuchs & Salce (2001 , p. 62).

See also

Related Research Articles

Abelian group Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

Field (mathematics) Algebraic structure with addition, multiplication and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

Group (mathematics) Set with associative invertible operation

In mathematics, a group is a set equipped with an operation that combines any two elements of the set to produce a third element of the set, in such a way that the operation is associative, an identity element exists and every element has an inverse. These three conditions, called group axioms, hold for number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and its definition through the group axioms was elaborated for handling, in a unified way, essential structural properties of entities of very different mathematical nature. Because of the ubiquity of groups in numerous areas, some authors consider them as a central organizing principle of contemporary mathematics.

In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered field is isomorphic to the reals.

Cyclic group Mathematical group that can be generated as the set of powers of a single element

In group theory, a branch of abstract algebra, a cyclic group or monogenous group is a group that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as a power of g in multiplicative notation, or as a multiple of g in additive notation. This element g is called a generator of the group.

In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A of finite arity, and a finite set of identities, known as axioms, that these operations must satisfy.

In abstract algebra, a partially ordered group is a group equipped with a partial order "≤" that is translation-invariant; in other words, "≤" has the property that, for all a, b, and g in G, if ab then a + gb + g and g + ag + b.

In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup. Torsion-free abelian groups of rank 1 have been completely classified. However, the theory of abelian groups of higher rank is more involved.

In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.

Algebraic group

In algebraic geometry, an algebraic group is a group that is an algebraic variety, such that the multiplication and inversion operations are given by regular maps on the variety.

Archimedean property Mathematical property of algebraic structures

In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typically construed, states that given two positive numbers x and y, there is an integer n such that nx > y. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no infinitely large or infinitely small elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ On the Sphere and Cylinder.

In abstract algebra, a branch of mathematics, an Archimedean group is a linearly ordered group for which the Archimedean property holds: every two positive group elements are bounded by integer multiples of each other. The set R of real numbers together with the operation of addition and the usual ordering relation between pairs of numbers is an Archimedean group. By a result of Otto Hölder, every Archimedean group is isomorphic to a subgroup of this group. The name "Archimedean" comes from Otto Stolz, who named the Archimedean property after its appearance in the works of Archimedes.

In algebra, a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.

In mathematics, specifically abstract algebra, a linearly ordered or totally ordered group is a group G equipped with a total order "≤" that is translation-invariant. This may have different meanings. We say that is a:

In mathematics, especially in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an nth multiple for each positive integer n. Divisible groups are important in understanding the structure of abelian groups, especially because they are the injective abelian groups.

In mathematics, the Jacobian varietyJ(C) of a non-singular algebraic curve C of genus g is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of C, hence an abelian variety.

Finitely generated group

In algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination of finitely many elements of the finite set S and of inverses of such elements.

In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.

In class field theory, the Takagi existence theorem states that for any number field K there is a one-to-one inclusion reversing correspondence between the finite abelian extensions of K and the generalized ideal class groups defined via a modulus of K.

In mathematics, the height of an element g of an abelian group A is an invariant that captures its divisibility properties: it is the largest natural number N such that the equation Nx = g has a solution xA, or the symbol ∞ if there is no such N. The p-height considers only divisibility properties by the powers of a fixed prime number p. The notion of height admits a refinement so that the p-height becomes an ordinal number. Height plays an important role in Prüfer theorems and also in Ulm's theorem, which describes the classification of certain infinite abelian groups in terms of their Ulm factors or Ulm invariants.

References

  1. "lo.logic - Hahn's Embedding Theorem and the oldest open question in set theory". MathOverflow. Retrieved 2021-01-28.