Harmonic superspace

Last updated

In supersymmetry, harmonic superspace [1] is one way of dealing with supersymmetric theories with 8 real SUSY generators in a manifestly covariant manner. It turns out that the 8 real SUSY generators are pseudoreal, and after complexification, correspond to the tensor product of a four-dimensional Dirac spinor with the fundamental representation of SU(2)R. The quotient space , which is a 2-sphere/Riemann sphere.

Supersymmetry symmetry between bosons and fermions in certain physical systems

In particle physics, supersymmetry (SUSY) is a principle that proposes a relationship between two basic classes of elementary particles: bosons, which have an integer-valued spin, and fermions, which have a half-integer spin. A type of spacetime symmetry, supersymmetry is a possible candidate for undiscovered particle physics, and seen as an elegant solution to many current problems in particle physics if confirmed correct, which could resolve various areas where current theories are believed to be incomplete. A supersymmetrical extension to the Standard Model would resolve major hierarchy problems within gauge theory, by guaranteeing that quadratic divergences of all orders will cancel out in perturbation theory.

In mathematics, the complexification of a vector space V over the field of real numbers yields a vector space VC over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for V may also serve as a basis for VC over the complex numbers.

In mathematics, the tensor productVW of two vector spaces V and W is itself a vector space, endowed with the operation of bilinear composition, denoted by , from ordered pairs in the Cartesian product V × W onto VW in a way that generalizes the outer product. The tensor product of V and W is the vector space generated by the symbols vw, with vV and wW, in which the relations of bilinearity are imposed for the product operation , and no other relations are assumed to hold. The tensor product space is thus the "freest" such vector space, in the sense of having the fewest constraints.

Contents

Harmonic superspace describes N=2 D=4, N=1 D=5, and N=(1,0) D=6 SUSY in a manifestly covariant manner.

There are many possible coordinate systems over S2, [2] but the one chosen not only involves redundant coordinates, but also happen to be a coordinatization of . We only get S2after a projection over . This is of course the Hopf fibration. Consider the left action of SU(2)R upon itself. We can then extend this to the space of complex valued smooth functions over SU(2)R. In particular, we have the subspace of functions which transform as the fundamental representation under SU(2)R. The fundamental representation (up to isomorphism, of course) is a two-dimensional complex vector space. Let us denote the indices of this representation by i,j,k,...=1,2. The subspace of interest consists of two copies of the fundamental representation. Under the right action by U(1)R -- which commutes with any left action—one copy has a "charge" of +1, and the other of -1. Let us label the basis functions .

Hopf fibration fiber bundle of the 3-sphere over the 2-sphere, with 1-spheres as fibers

In the mathematical field of differential topology, the Hopf fibration describes a 3-sphere in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an influential early example of a fiber bundle. Technically, Hopf found a many-to-one continuous function from the 3-sphere onto the 2-sphere such that each distinct point of the 2-sphere comes from a distinct circle of the 3-sphere. Thus the 3-sphere is composed of fibers, where each fiber is a circle—one for each point of the 2-sphere.

.

The redundancy in the coordinates is given by

.

Everything can be interpreted in terms of algebraic geometry. The projection is given by the "gauge transformation" where φ is any real number. Think of S3 as a U(1)R-principal bundle over S2 with a nonzero first Chern class. Then, "fields" over S2 are characterized by an integral U(1)R charge given by the right action of U(1)R. For instance, u+ has a charge of +1, and u of -1. By convention, fields with a charge of +r are denoted by a superscript with r +'s, and ditto for fields with a charge of -r. R-charges are additive under the multiplication of fields.

Algebraic geometry branch of mathematics

Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.

In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X × G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equipped with

  1. An action of G on P, analogous to (x, g)h = for a product space.
  2. A projection onto X. For a product space, this is just the projection onto the first factor, (x,g) ↦ x.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles.

The SUSY charges are , and the corresponding fermionic coordinates are . Harmonic superspace is given by the product of ordinary extended superspace (with 8 real fermionic coordinatates) with S2 with the nontrivial U(1)R bundle over it. The product is somewhat twisted in that the fermionic coordinates are also charged under U(1)R. This charge is given by

.

We can define the covariant derivatives with the property that they supercommute with the SUSY transformations, and where f is any function of the harmonic variables. Similarly, define

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean derivative along a tangent vector onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

and

.

A chiral superfield q with an R-charge of r satisfies . A scalar hypermultiplet is given by a chiral superfield . We have the additional constraint

.

According to the Atiyah-Singer index theorem, the solution space to the previous constraint is a two-dimensional complex manifold.

Relation to quaternions

The group can be identified with the Lie group of quaternions with unit norm under multiplication. , and hence the quaternions act upon the tangent space of extended superspace. The bosonic spacetime dimensions transform trivially under while the fermionic dimensions transform according to the fundamental representation. [3] The left multiplication by quaternions is linear. Now consider the subspace of unit quaternions with no real component, which is isomorphic to S2. Each element of this subspace can act as the imaginary number i in a complex subalgebra of the quaternions. So, for each element of S2, we can use the corresponding imaginary unit to define a complex-real structure over the extended superspace with 8 real SUSY generators. The totality of all CR structures for each point in S2 is harmonic superspace.

See also

Related Research Articles


In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As K-algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford.

Quaternion number system that extends the complex numbers

In mathematics, the quaternions are a number system that extends the complex numbers. They were first described by Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. A feature of quaternions is that multiplication of two quaternions is noncommutative. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space or equivalently as the quotient of two vectors.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space R3 under the operation of composition. By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance, and orientation. Every non-trivial rotation is determined by its axis of rotation and its angle of rotation. Composing two rotations results in another rotation; every rotation has a unique inverse rotation; and the identity map satisfies the definition of a rotation. Owing to the above properties, the set of all rotations is a group under composition. Rotations are not commutative, making it a nonabelian group. Moreover, the rotation group has a natural structure as a manifold for which the group operations are smoothly differentiable; so it is in fact a Lie group. It is compact and has dimension 3.

Special unitary group group of unitary matrices with unit determinant

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

Unit quaternions, also known as versors, provide a convenient mathematical notation for representing orientations and rotations of objects in three dimensions. Compared to Euler angles they are simpler to compose and avoid the problem of gimbal lock. Compared to rotation matrices they are more compact, more numerically stable, and more efficient. Quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites and crystallographic texture analysis.

The Flipped SU(5) model is a grand unified theory (GUT) theory first contemplated by Stephen Barr in 1982, and by Dimitri Nanopoulos and others in 1984. Ignatios Antoniadis, John Ellis, John Hagelin, and Nanopoulos developed the supersymmetric flipped SU(5), derived from the deeper-level superstring.

Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions x, y, z, ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom.

Supergravity field theory that combines the principles of supersymmetry and general relativity

In theoretical physics, supergravity is a modern field theory that combines the principles of supersymmetry and general relativity; in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, gauging supersymmetry makes gravity arise in a natural way.

In theoretical physics, a super-Poincaré algebra is an extension of the Poincaré algebra to incorporate supersymmetry, a relation between bosons and fermions. They are examples of supersymmetry algebras, and are Lie superalgebras. Thus a super-Poincaré algebra is a Z2-graded vector space with a graded Lie bracket such that the even part is a Lie algebra containing the Poincaré algebra, and the odd part is built from spinors on which there is an anticommutation relation with values in the even part.

In theoretical physics, supersymmetric quantum mechanics is an area of research where mathematical concepts from high-energy physics are applied to the field of quantum mechanics.

In theoretical physics, extended supersymmetry is supersymmetry whose infinitesimal generators carry not only a spinor index , but also an additional index where is integer.

In theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetries. Supersymmetric gauge theory generalizes this notion.

In mathematics, a versor is a quaternion of norm one.

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group.

The gauge covariant derivative is a variation of the covariant derivative used in general relativity. If a theory has gauge transformations, it means that some physical properties of certain equations are preserved under those transformations. Likewise, the gauge covariant derivative is the ordinary derivative modified in such a way as to make it behave like a true vector operator, so that equations written using the covariant derivative preserve their physical properties under gauge transformations.

William Rowan Hamilton invented quaternions, a mathematical entity in 1843. This article describes Hamilton's original treatment of quaternions, using his notation and terms. Hamilton's treatment is more geometric than the modern approach, which emphasizes quaternions' algebraic properties. Mathematically, quaternions discussed differ from the modern definition only by the terminology which is used.

In supersymmetry, a theory of particle physics, projective superspace is one way of dealing with supersymmetric theories, i.e. with 8 real SUSY generators, in a manifestly covariant manner.

Gluon field strength tensor

In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

Gluon field

In theoretical particle physics, the gluon field is a four vector field characterizing the propagation of gluons in the strong interaction between quarks. It plays the same role in quantum chromodynamics as the electromagnetic four-potential in quantum electrodynamics – the gluon field constructs the gluon field strength tensor.

References

  1. Galperin, Alexander Samoilovich; E. A. Ivanov; V. I. Ogievetsky; E. S. Sokatchev (2001). Harmonic Superspace. Cambridge University Press. p. 306. ISBN   978-0-521-80164-5.
  2. Needless to say, other coordinate systems are also possible, and nothing physical is dependent upon the choice of coordinates, but the u coordinates have the advantage of being simple and convenient to use.
  3. In 10D SUSY with four spatial dimensions compactified over a hyperkähler manifold, half of the SUSY generators are broken, and the remaining generators can be expressed using harmonic superspace. The four compactified spatial dimensions transforms as a fundamental representation under .