Higher-dimensional Einstein gravity

Last updated

Higher-dimensional Einstein gravity is any of various physical theories that attempt to generalise to higher dimensions various results of the well established theory of standard (four-dimensional) Albert Einstein's gravitational theory, that is, general relativity. This attempt at generalisation has been strongly influenced in recent decades by string theory.

Contents

At present, this work can probably be most fairly described as extended theoretical speculation. Currently, it has no direct observational and experimental support, in contrast to four-dimensional general relativity. However, this theoretical work has led to the possibility of proving the existence of extra dimensions. This is best demonstrated by the proof of Harvey Reall and Roberto Emparan that there is a 'black ring' solution in 5 dimensions. If such a 'black ring' could be produced in a particle accelerator such as the Large Hadron Collider, this would provide the evidence that higher dimensions exist.

Exact solutions

The higher-dimensional generalization of the Kerr metric was discovered by Robert Myers and Malcolm Perry. [1] Like the Kerr metric, the Myers-Perry metric has spherical horizon topology. The construction involves making a Kerr-Schild ansatz; by a similar method, the solution has been generalized to include a cosmological constant. The black ring is a solution of five-dimensional general relativity. It inherits its name from the fact that its event horizon is topologically S1 × S2. This is in contrast to other known black hole solutions in five dimensions which have horizon topology S3.

In 2014, Hari Kunduri and James Lucietti proved the existence of a black hole with Lens space topology of the L(2, 1) type in five dimensions, [2] this was next extended to all L(p, 1) with positive integers p by Shinya Tomizawa and Masato Nozawa in 2016 [3] and finally in a preprint to all L(p, q) and any dimension by Marcus Khuri and Jordan Rainone in 2022, [4] [5] a black lens doesn't necessarily need to rotate as a black ring but all examples so far need a matter field coming from the extra dimensions to remain stable.

Black hole uniqueness

In four dimensions, Hawking proved that the topology of the event horizon of a non-rotating black hole must be spherical. [6] Because the proof uses the Gauss–Bonnet theorem, it does not generalize to higher dimensions. The discovery of black ring solutions in five dimensions [7] shows that other topologies are allowed in higher dimensions, but it is unclear precisely which topologies are allowed. It has been shown that the horizon must be of positive Yamabe type, meaning that it must admit a metric of positive scalar curvature. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Black hole</span> Object that has a no-return boundary

A black hole is a region of spacetime where gravity is so strong that nothing, including light and other electromagnetic waves, is capable of possessing enough energy to escape it. Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. A black hole has a great effect on the fate and circumstances of an object crossing it, but it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

<span class="mw-page-title-main">Gravitational singularity</span> Condition in which spacetime itself breaks down

A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.

The following is a timeline of gravitational physics and general relativity.

Hawking radiation is the theoretical thermal black-body radiation released outside a black hole's event horizon. This is counterintuitive because once ordinary electromagnetic radiation is inside the event horizon, it cannot escape. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is predicted to be extremely faint and is many orders of magnitude below the current best telescopes' detecting ability.

The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum. Other characteristics are uniquely determined by these three parameters, and all other information about the matter that formed a black hole or is falling into it "disappears" behind the black-hole event horizon and is therefore permanently inaccessible to external observers after the black hole "settles down". Physicist John Archibald Wheeler expressed this idea with the phrase "black holes have no hair", which was the origin of the name.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

A gravastar is an object hypothesized in astrophysics by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has usual black hole metric outside of the horizon, but de Sitter metric inside. On the horizon there is a thin shell of matter. The term "gravastar" is a portmanteau of the words "gravitational vacuum star". Further theoretical considerations of gravastars include the notion of a nestar.

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

The Immirzi parameter is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.

The Unruh effect is a theoretical prediction in quantum field theory that an observer who is uniformly accelerating through empty space will perceive a thermal bath. This means that even in the absence of any external heat sources, an accelerating observer will detect particles and experience a temperature. In contrast, an inertial observer in the same region of spacetime would observe no temperature.

Micro black holes, also called mini black holes or quantum mechanical black holes, are hypothetical tiny black holes, for which quantum mechanical effects play an important role. The concept that black holes may exist that are smaller than stellar mass was introduced in 1971 by Stephen Hawking.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena described by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

A ring singularity or ringularity is the gravitational singularity of a rotating black hole, or a Kerr black hole, that is shaped like a ring.

A sonic black hole, sometimes called a dumb hole or acoustic black hole, is a phenomenon in which phonons are unable to escape from a region of a fluid that is flowing more quickly than the local speed of sound. They are called sonic, or acoustic, black holes because these trapped phonons are analogous to light in astrophysical (gravitational) black holes. Physicists are interested in them because they have many properties similar to astrophysical black holes and, in particular, emit a phononic version of Hawking radiation. This Hawking radiation can be spontaneously created by quantum vacuum fluctuations, in close analogy with Hawking radiation from a real black hole. On the other hand, the Hawking radiation can be stimulated in a classical process. The boundary of a sonic black hole, at which the flow speed changes from being greater than the speed of sound to less than the speed of sound, is called the event horizon.

A nonsingular black hole model is a mathematical theory of black holes that avoids certain theoretical problems with the standard black hole model, including information loss and the unobservable nature of the black hole event horizon.

The BTZ black hole, named after Máximo Bañados, Claudio Teitelboim, and Jorge Zanelli, is a black hole solution for (2+1)-dimensional topological gravity with a negative cosmological constant.

A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quanta at the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully as a possible solution to an apparent inconsistency in black hole complementarity. The proposal is sometimes referred to as the AMPS firewall, an acronym for the names of the authors of the 2012 paper. The potential inconsistency pointed out by AMPS had been pointed out earlier by Samir Mathur who used the argument in favour of the fuzzball proposal. The use of a firewall to resolve this inconsistency remains controversial, with physicists divided as to the solution to the paradox.

References

  1. Robert C. Myers, M.J. Perry (1986). "Black Holes in Higher Dimensional Space-Times". Annals of Physics. 172 (2): 304–347. Bibcode:1986AnPhy.172..304M. doi:10.1016/0003-4916(86)90186-7.
  2. Kunduri, Hari K.; Lucietti, James (2014-11-17). "Supersymmetric Black Holes with Lens-Space Topology". Physical Review Letters. 113 (21): 211101. arXiv: 1408.6083 . Bibcode:2014PhRvL.113u1101K. doi:10.1103/PhysRevLett.113.211101. PMID   25479484. S2CID   119060757.
  3. Tomizawa, Shinya; Nozawa, Masato (2016-08-22). "Supersymmetric black lenses in five dimensions". Physical Review D. 94 (4): 044037. arXiv: 1606.06643 . Bibcode:2016PhRvD..94d4037T. doi:10.1103/PhysRevD.94.044037. S2CID   118524018.
  4. Khuri, Marcus A.; Rainone, Jordan F. (2023). "Black Lenses in Kaluza-Klein Matter". Physical Review Letters. 131 (4): 041402. arXiv: 2212.06762 . Bibcode:2023PhRvL.131d1402K. doi:10.1103/PhysRevLett.131.041402. PMID   37566867. S2CID   254591339.
  5. Nadis, Steve (2023-01-24). "Mathematicians Find an Infinity of Possible Black Hole Shapes". Quanta Magazine. Retrieved 2023-01-24.
  6. Hawking, S. W. (1972). "Black holes in general relativity". Communications in Mathematical Physics. 25 (2): 152–166. Bibcode:1972CMaPh..25..152H. doi:10.1007/BF01877517. ISSN   0010-3616. S2CID   121527613.
  7. Emparan, Roberto; Reall, Harvey S. (21 February 2002). "A Rotating Black Ring Solution in Five Dimensions". Phys. Rev. Lett. 88 (10): 101101–101104. arXiv: hep-th/0110260 . Bibcode:2002PhRvL..88j1101E. doi:10.1103/PhysRevLett.88.101101. hdl: 2445/13248 . PMID   11909335. S2CID   6923777.
  8. Galloway, Gregory J.; Schoen, Richard (2006-09-01). "A Generalization of Hawking's Black Hole Topology Theorem to Higher Dimensions". Communications in Mathematical Physics. 266 (2): 571–576. arXiv: gr-qc/0509107 . Bibcode:2006CMaPh.266..571G. doi:10.1007/s00220-006-0019-z. ISSN   1432-0916. S2CID   5439828.