Hofstadter's butterfly

Last updated
Rendering of the butterfly by Hofstadter Gplot by Hofstadter.jpg
Rendering of the butterfly by Hofstadter

In condensed matter physics, Hofstadter's butterfly is a graph of the spectral properties of non-interacting two-dimensional electrons in a perpendicular magnetic field in a lattice. The fractal, self-similar nature of the spectrum was discovered in the 1976 Ph.D. work of Douglas Hofstadter [1] and is one of the early examples of modern scientific data visualization. The name reflects the fact that, as Hofstadter wrote, "the large gaps [in the graph] form a very striking pattern somewhat resembling a butterfly." [1]

Contents

The Hofstadter butterfly plays an important role in the theory of the integer quantum Hall effect and the theory of topological quantum numbers.

History

The first mathematical description of electrons on a 2D lattice, acted on by a perpendicular homogeneous magnetic field, was studied by Rudolf Peierls and his student R. G. Harper in the 1950s. [2] [3]

Hofstadter first described the structure in 1976 in an article on the energy levels of Bloch electrons in perpendicular magnetic fields. [1] It gives a graphical representation of the spectrum of Harper's equation at different frequencies. One key aspect of the mathematical structure of this spectrum – the splitting of energy bands for a specific value of the magnetic field, along a single dimension (energy) – had been previously mentioned in passing by Soviet physicist Mark Azbel in 1964 [4] (in a paper cited by Hofstadter), but Hofstadter greatly expanded upon that work by plotting all values of the magnetic field against all energy values, creating the two-dimensional plot that first revealed the spectrum's uniquely recursive geometric properties. [1]

Written while Hofstadter was at the University of Oregon, his paper was influential in directing further research. It predicted on theoretical grounds that the allowed energy level values of an electron in a two-dimensional square lattice, as a function of a magnetic field applied perpendicularly to the system, formed what is now known as a fractal set. That is, the distribution of energy levels for small-scale changes in the applied magnetic field recursively repeats patterns seen in the large-scale structure. [1] "Gplot", as Hofstadter called the figure, was described as a recursive structure in his 1976 article in Physical Review B , [1] written before Benoit Mandelbrot's newly coined word "fractal" was introduced in an English text. Hofstadter also discusses the figure in his 1979 book Gödel, Escher, Bach . The structure became generally known as "Hofstadter's butterfly".

David J. Thouless and his team discovered that the butterfly's wings are characterized by Chern integers, which provide a way to calculate the Hall conductance in Hofstadter's model. [5]

Confirmation

A simulation of electrons via superconducting qubits yields Hofstadter's butterfly 2017-09-22-113215 627x350 scrot.png
A simulation of electrons via superconducting qubits yields Hofstadter's butterfly

In 1997 the Hofstadter butterfly was reproduced in experiments with a microwave guide equipped with an array of scatterers. [6] The similarity between the mathematical description of the microwave guide with scatterers and Bloch's waves in the magnetic field allowed the reproduction of the Hofstadter butterfly for periodic sequences of the scatterers.

In 2001, Christian Albrecht, Klaus von Klitzing , and coworkers realized an experimental setup to test Thouless et al.'s predictions about Hofstadter's butterfly with a two-dimensional electron gas in a superlattice potential. [7] [2]

In 2013, three separate groups of researchers independently reported evidence of the Hofstadter butterfly spectrum in graphene devices fabricated on hexagonal boron nitride substrates. [8] [9] [10] In this instance the butterfly spectrum results from the interplay between the applied magnetic field and the large-scale moiré pattern that develops when the graphene lattice is oriented with near zero-angle mismatch to the boron nitride.

In September 2017, John Martinis's group at Google, in collaboration with the Angelakis group at CQT Singapore, published results from a simulation of 2D electrons in a perpendicular magnetic field using interacting photons in 9 superconducting qubits. The simulation recovered Hofstadter's butterfly, as expected. [11]

In 2021 the butterfly was observed in twisted bilayer graphene at the second magic angle. [12]

Theoretical model

Hofstadter butterfly is the graphical solution to Harper's equation, where the energy ratio
[?]
{\displaystyle \epsilon }
is plotted as a function of the flux ratio
2
p
a
{\displaystyle 2\pi \alpha }
. Hofstadter's butterfly monochrome with axes en.jpg
Hofstadter butterfly is the graphical solution to Harper's equation, where the energy ratio is plotted as a function of the flux ratio.

In his original paper, Hofstadter considers the following derivation: [1] a charged quantum particle in a two-dimensional square lattice, with a lattice spacing , is described by a periodic Schrödinger equation, under a perpendicular static homogeneous magnetic field restricted to a single Bloch band. For a 2D square lattice, the tight binding energy dispersion relation is

,

where is the energy function, is the crystal momentum, and is an empirical parameter. The magnetic field , where the magnetic vector potential, can be taken into account by using Peierls substitution, replacing the crystal momentum with the canonical momentum , where is the particle momentum operator and is the charge of the particle ( for the electron, is the elementary charge). For convenience we choose the gauge .

Using that is the translation operator, so that , where and is the particle's two-dimensional wave function. One can use as an effective Hamiltonian to obtain the following time-independent Schrödinger equation:

Considering that the particle can only hop between points in the lattice, we write , where are integers. Hofstadter makes the following ansatz: , where depends on the energy, in order to obtain Harper's equation (also known as almost Mathieu operator for ):

where and , is proportional to the magnetic flux through a lattice cell and is the magnetic flux quantum. The flux ratio can also be expressed in terms of the magnetic length , such that . [1]

Hofstadter's butterfly is the resulting plot of as a function of the flux ratio , where is the set of all possible that are a solution to Harper's equation.

Solutions to Harper's equation and Wannier treatment

Hofstadter's butterfly phase diagram at zero temperature. The horizontal axis indicates electron density, starting with no electrons from the left. The vertical axis indicates the strength of the magnetic flux, starting from zero at the bottom, the pattern repeats periodically for higher fields. The colors represent the Chern numbers of the gaps in the spectrum, also known as the TKNN (Thouless, Kohmoto, Nightingale and Nijs) integers. Blueish cold colors indicate negative Chern numbers, warm red colors indicate positive Chern numbers, white indicates zero. Img 8960x5600.png
Hofstadter's butterfly phase diagram at zero temperature. The horizontal axis indicates electron density, starting with no electrons from the left. The vertical axis indicates the strength of the magnetic flux, starting from zero at the bottom, the pattern repeats periodically for higher fields. The colors represent the Chern numbers of the gaps in the spectrum, also known as the TKNN (Thouless, Kohmoto, Nightingale and Nijs) integers. Blueish cold colors indicate negative Chern numbers, warm red colors indicate positive Chern numbers, white indicates zero.

Due to the cosine function's properties, the pattern is periodic on with period 1 (it repeats for each quantum flux per unit cell). The graph in the region of between 0 and 1 has reflection symmetry in the lines and . [1] Note that is necessarily bounded between -4 and 4. [1]

Harper's equation has the particular property that the solutions depend on the rationality of . By imposing periodicity over , one can show that if (a rational number), where and are distinct prime numbers, there are exactly energy bands. [1] For large , the energy bands converge to thin energy bands corresponding to the Landau levels.

Gregory Wannier showed that by taking into account the density of states, one can obtain a Diophantine equation that describes the system, [13] as

where

where and are integers, and is the density of states at a given . Here counts the number of states up to the Fermi energy, and corresponds to the levels of the completely filled band (from to ). This equation characterizes all the solutions of Harper's equation. Most importantly, one can derive that when is an irrational number, there are infinitely many solution for .

The union of all forms a self-similar fractal that is discontinuous between rational and irrational values of . This discontinuity is nonphysical, and continuity is recovered for a finite uncertainty in [1] or for lattices of finite size. [14] The scale at which the butterfly can be resolved in a real experiment depends on the system's specific conditions. [2]

Phase diagram, conductance and topology

The phase diagram of electrons in a two-dimensional square lattice, as a function of a perpendicular magnetic field, chemical potential and temperature, has infinitely many phases. Thouless and coworkers showed that each phase is characterized by an integral Hall conductance, where all integer values are allowed. These integers are known as Chern numbers. [2]

See also

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. Due to the larger relative mass of a nucleus compared to an electron, the coordinates of the nuclei in a system are approximated as fixed, while the coordinates of the electrons are dynamic. The approach is named after Max Born and his 23-year-old graduate student J. Robert Oppenheimer, the latter of whom proposed it in 1927 during a period of intense ferment in the development of quantum mechanics.

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the Swiss physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

In mathematical physics, the WKB approximation or WKB method is a method for finding approximate solutions to linear differential equations with spatially varying coefficients. It is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded, and then either the amplitude or the phase is taken to be changing slowly.

A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system for three-dimensional Euclidean space, . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on , or less often on for some other .

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields.

<span class="mw-page-title-main">Degenerate energy levels</span> Energy level of a quantum system that corresponds to two or more different measurable states

In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy of the level. It is represented mathematically by the Hamiltonian for the system having more than one linearly independent eigenstate with the same energy eigenvalue. When this is the case, energy alone is not enough to characterize what state the system is in, and other quantum numbers are needed to characterize the exact state when distinction is desired. In classical mechanics, this can be understood in terms of different possible trajectories corresponding to the same energy.

The Franz–Keldysh effect is a change in optical absorption by a semiconductor when an electric field is applied. The effect is named after the German physicist Walter Franz and Russian physicist Leonid Keldysh.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In 1927, a year after the publication of the Schrödinger equation, Hartree formulated what are now known as the Hartree equations for atoms, using the concept of self-consistency that Lindsay had introduced in his study of many electron systems in the context of Bohr theory. Hartree assumed that the nucleus together with the electrons formed a spherically symmetric field. The charge distribution of each electron was the solution of the Schrödinger equation for an electron in a potential , derived from the field. Self-consistency required that the final field, computed from the solutions, was self-consistent with the initial field, and he thus called his method the self-consistent field method.

In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.

An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:

<span class="mw-page-title-main">Matrix representation of Maxwell's equations</span>

In electromagnetism, a branch of fundamental physics, the matrix representations of the Maxwell's equations are a formulation of Maxwell's equations using matrices, complex numbers, and vector calculus. These representations are for a homogeneous medium, an approximation in an inhomogeneous medium. A matrix representation for an inhomogeneous medium was presented using a pair of matrix equations. A single equation using 4 × 4 matrices is necessary and sufficient for any homogeneous medium. For an inhomogeneous medium it necessarily requires 8 × 8 matrices.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

<span class="mw-page-title-main">Loop representation in gauge theories and quantum gravity</span> Description of gauge theories using loop operators

Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.

The Peierls substitution method, named after the original work by Rudolf Peierls is a widely employed approximation for describing tightly-bound electrons in the presence of a slowly varying magnetic vector potential.

The Aubry–André model is a toy model of a one-dimensional crystal with periodically varying onsite energies. The model is employed to study both quasicrystals and the Anderson localization metal-insulator transition in disordered systems. It was first developed by Serge Aubry and Gilles André in 1980.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 Hofstadter, Douglas R. (1976). "Energy levels and wavefunctions of Bloch electrons in rational and irrational magnetic fields". Physical Review B . 14 (6): 2239–2249. Bibcode:1976PhRvB..14.2239H. doi:10.1103/PhysRevB.14.2239.
  2. 1 2 3 4 5 Avron J, Osadchy D., and Seiler R. (2003). "A topological look at the quantum Hall effect". Physics Today. 53 (8): 38–42. Bibcode:2003PhT....56h..38A. doi: 10.1063/1.1611351 .
  3. Harper, P G (1955-10-01). "Single Band Motion of Conduction Electrons in a Uniform Magnetic Field". Proceedings of the Physical Society. Section A. 68 (10): 874–878. Bibcode:1955PPSA...68..874H. doi:10.1088/0370-1298/68/10/304. ISSN   0370-1298.
  4. Azbel', Mark Ya. (1964). "Energy Spectrum of a Conduction Electron in a Magnetic Field". Journal of Experimental and Theoretical Physics . 19 (3): 634–645.
  5. Thouless D., Kohmoto M, Nightngale and M. den-Nijs (1982). "Quantized Hall conductance in a two-dimensional periodic potential". Physical Review Letters. 49 (6): 405–408. Bibcode:1982PhRvL..49..405T. doi: 10.1103/PhysRevLett.49.405 .
  6. Kuhl, U.; Stöckmann, H.-J. (13 April 1998). "Microwave realization of the Hofstadter butterfly". Physical Review Letters . 80 (15): 3232–3235. Bibcode:1998PhRvL..80.3232K. doi:10.1103/PhysRevLett.80.3232.
  7. Albrecht, C.; Smet, J. H.; von Klitzing, K.; Weiss, D.; Umansky, V.; Schweizer, H. (2001-01-01). "Evidence of Hofstadter's Fractal Energy Spectrum in the Quantized Hall Conductance". Physical Review Letters. 86 (1): 147–150. Bibcode:2001PhRvL..86..147A. doi:10.1103/PhysRevLett.86.147. ISSN   0031-9007. PMID   11136115.
  8. Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M.; Taniguchi, T.; Watanabe, K.; Shepard, K. L.; Hone, J.; Kim, P. (30 May 2013). "Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices". Nature . 497 (7451): 598–602. arXiv: 1212.4783 . Bibcode:2013Natur.497..598D. doi:10.1038/nature12186. PMID   23676673. S2CID   119210000.
  9. Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A.; Mishchenko, A.; Mayorov, A. S.; Woods, C. R.; Wallbank, J. R.; Mucha-Kruczynski, M.; Piot, B. A.; Potemski, M.; Grigorieva, I. V.; Novoselov, K. S.; Guinea, F.; Fal’ko, V. I.; Geim, A. K. (30 May 2013). "Cloning of Dirac fermions in graphene superlattices". Nature . 497 (7451): 594–597. arXiv: 1212.5012 . Bibcode:2013Natur.497..594P. doi:10.1038/nature12187. hdl:10261/93894. PMID   23676678. S2CID   4431176.
  10. Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P.; Ashoori, R. C. (2013). "Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure". Science . 340 (6139): 1427–1430. arXiv: 1303.6942 . Bibcode:2013Sci...340.1427H. doi:10.1126/science.1237240. PMID   23686343. S2CID   37694594.
  11. Roushan, P.; Neill, C.; Tangpanitanon, J.; Bastidas, V. M.; Megrant, A.; Barends, R.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Foxen, B.; Giustina, M.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Neven, H.; Angelakis, D. G.; Martinis, J. (2017-12-01) [2017-09-20]. "Spectroscopic signatures of localization with interacting photons in superconducting qubits" [Spectral signatures of many-body localization with interacting photons]. Science . 358 (6367): 1175–1179. arXiv: 1709.07108 . Bibcode:2017Sci...358.1175R. doi:10.1126/science.aao1401. ISSN   0036-8075. PMID   29191906. S2CID   206662292.
  12. Lu, Xiaobo; Lian, Biao; Chaudhary, Gaurav; Piot, Benjamin A.; Romagnoli, Giulio; Watanabe, Kenji; Taniguchi, Takashi; Poggio, Martino; MacDonald, Allan H.; Bernevig, B. Andrei; Efetov, Dmitri K. (2021-07-27). "Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle". Proceedings of the National Academy of Sciences. 118 (30): e2100006118. arXiv: 2006.13963 . Bibcode:2021PNAS..11800006L. doi: 10.1073/pnas.2100006118 . ISSN   0027-8424. PMC   8325360 . PMID   34301893.
  13. Wannier, G. H. (1978-08-01). "A Result Not Dependent on Rationality for Bloch Electrons in a Magnetic Field". Physica Status Solidi B. 88 (2): 757–765. Bibcode:1978PSSBR..88..757W. doi:10.1002/pssb.2220880243.
  14. Analytis, James G.; Blundell, Stephen J.; Ardavan, Arzhang (May 2004). "Landau levels, molecular orbitals, and the Hofstadter butterfly in finite systems". American Journal of Physics. 72 (5): 613–618. Bibcode:2004AmJPh..72..613A. doi:10.1119/1.1615568. ISSN   0002-9505.