Homeokinetics

Last updated

Homeokinetics is the study of self-organizing, complex systems. [1] [2] [3] Standard physics studies systems at separate levels, such as atomic physics, nuclear physics, biophysics, social physics, and galactic physics. Homeokinetic physics studies the up-down processes that bind these levels. Tools such as mechanics, quantum field theory, and the laws of thermodynamics provide the key relationships. The subject, described as the physics and thermodynamics associated with the up down movement between levels of systems, originated in the late 1970s work of American physicists Harry Soodak and Arthur Iberall. Complex systems are universes, galaxies, social systems, people, or even those that seem as simple as gases. The basic premise is that the entire universe consists of atomistic-like units bound in interactive ensembles to form systems, level by level, in a nested hierarchy. Homeokinetics treats all complex systems on an equal footing, animate and inanimate, providing them with a common viewpoint. The complexity in studying how they work is reduced by the emergence of common languages in all complex systems. [2]

Contents

History

Arthur Iberall, Warren McCulloch and Harry Soodak developed the concept of homeokinetics as a new branch of physics. It began through Iberall's biophysical research for the NASA exobiology program into the dynamics of mammalian physiological processes [4] [5] They were observing an area that physics has neglected, that of complex systems with their very long internal factory day delays. They were observing systems associated with nested hierarchy and with an extensive range of time scale processes. [6] [7] It was such connections, referred to as both up-down or in-out connections (as nested hierarchy) and side-side or flatland physics among atomistic-like components (as heterarchy) that became the hallmark of homeokinetic problems. By 1975, they began to put a formal catch-phrase name on those complex problems, associating them with nature, life, human, mind, and society. The major method of exposition that they began using was a combination of engineering physics and a more academic pure physics. In 1981, Iberall was invited to the Crump Institute for Medical Engineering of UCLA, where he further refined the key concepts of homeokinetics, developing a physical scientific foundation for complex systems.

Self-organizing complex Systems

A system is a collective of interacting ‘atomistic’-like entities. [2] [1] The word ‘atomism’ is used to stand both for the entity and the doctrine. As is known from ‘kinetic’ theory, in mobile or simple systems, the atomisms share their ‘energy’ in interactive collisions. That so-called ‘equipartitioning’ process takes place within a few collisions. Physically, if there is little or no interaction, the process is considered to be very weak. Physics deals basically with the forces of interaction—few in number—that influence the interactions. They all tend to emerge with considerable force at high ‘density’ of atomistic interaction. In complex systems, there is also a result of internal processes in the atomisms. They exhibit, in addition to the pair-by-pair interactions, internal actions such as vibrations, rotations, and association. If the energy and time involved internally creates a very large—in time—cycle of performance of their actions compared to their pair interactions, the collective system is complex. If you eat a cookie and you do not see the resulting action for hours, that is complex; if boy meets girl and they become ‘engaged’ for a protracted period, that is complex. What emerges from that physics is a broad host of changes in state and stability transitions in state. Viewing Aristotle as having defined a general basis for systems in their static-logical states and trying to identify a logic-metalogic for physics, e.g., metaphysics, then homeokinetics is viewed to be an attempt to define the dynamics of all those systems in the universe.

Flatland physics vs. homeokinetic physics

Ordinary physics is a flatland physics, a physics at some particular level. Examples include nuclear and atomic physics, biophysics, social physics, and stellar physics. Homeokinetic physics combines flatland physics with the study of the up down processes that binds the levels. [8] Tools, such as mechanics, quantum field theory, and the laws of thermodynamics, provide key relationships for the binding of the levels, how they connect, and how the energy flows up and down. And whether the atomisms are atoms, molecules, cells, people, stars, galaxies, or universes, the same tools can be used to understand them. Homeokinetics treats all complex systems on an equal footing, animate and inanimate, providing them with a common viewpoint. The complexity in studying how they work is reduced by the emergence of common languages in all complex systems.

Applications

A homeokinetic approach to complex systems has been applied to understanding life, [9] ecological psychology, [10] mind, [11] [12] [13] anthropology, geology, law, motor control, [14] bioenergetics, healing modalities, [15]  and political science.

It has also been applied to social physics where a homeokinetics analysis shows that one must account for flow variables such as the flow of energy, of materials, of action, reproduction rate, and value-in-exchange. [16] [17] [18] [19] [20] [21] Iberall's conjectures on life and mind have been used as a springboard to develop theories of mental activity and action. [22]

Related Research Articles

The following outline is provided as an overview of and topical guide to chemistry:

Physics Study of the fundamental properties of matter and energy

Physics is the natural science that studies matter, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.

Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together called the "physical sciences".

The following outline is provided as an overview of and topical guide to physics:

Theory of everything Hypothetical single, all-encompassing, coherent theoretical framework of physics

A theory of everything, final theory, ultimate theory, or master theory is a hypothetical single, all-encompassing, coherent theoretical framework of physics that fully explains and links together all physical aspects of the universe. Finding a TOE is one of the major unsolved problems in physics. String theory and M-theory have been proposed as theories of everything. Over the past few centuries, two theoretical frameworks have been developed that, together, most closely resemble a TOE. These two theories upon which all modern physics rests are general relativity and quantum mechanics. General relativity is a theoretical framework that only focuses on gravity for understanding the universe in regions of both large scale and high mass: stars, galaxies, clusters of galaxies, etc. On the other hand, quantum mechanics is a theoretical framework that only focuses on three non-gravitational forces for understanding the universe in regions of both small scale and low mass: sub-atomic particles, atoms, molecules, etc. Quantum mechanics successfully implemented the Standard Model that describes the three non-gravitational forces – strong nuclear, weak nuclear, and electromagnetic force – as well as all observed elementary particles.

Theoretical chemistry Academic field

Theoretical chemistry is the branch of chemistry which develops theoretical generalizations that are part of the theoretical arsenal of modern chemistry: for example, the concepts of chemical bonding, chemical reaction, valence, the surface of potential energy, molecular orbitals, orbital interactions, and molecule activation.

Emergence Phenomenon in complex systems where interactions produce effects not directly predictable from the subsystems

In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors which emerge only when the parts interact in a wider whole.

Natural science Branch of science about the natural world

Natural science is a branch of science concerned with the description, prediction, and understanding of natural phenomena, based on empirical evidence from observation and experimentation. Mechanisms such as peer review and repeatability of findings are used to try to ensure the validity of scientific advances.

Biophysics Study of biological systems using methods from the physical sciences

Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. Biophysics covers all scales of biological organization, from molecular to organismic and populations. Biophysical research shares significant overlap with biochemistry, molecular biology, physical chemistry, physiology, nanotechnology, bioengineering, computational biology, biomechanics, developmental biology and systems biology.

Outline of academic disciplines Overviews of and topical guides to academic disciplines

An academic discipline or field of study is a branch of knowledge, taught and researched as part of higher education. A scholar's discipline is commonly defined by the university faculties and learned societies to which he/she belongs and the academic journals in which he/she publishes research.

Holon (philosophy)

A holon is something that is simultaneously a whole in and of itself, as well as a part of a larger whole. In other words, holons can be understood as the constituent part–wholes of a hierarchy.

Self-organization Process of creating order by local interactions

Self-organization, also called spontaneous order, is a process where some form of overall order arises from local interactions between parts of an initially disordered system. The process can be spontaneous when sufficient energy is available, not needing control by any external agent. It is often triggered by seemingly random fluctuations, amplified by positive feedback. The resulting organization is wholly decentralized, distributed over all the components of the system. As such, the organization is typically robust and able to survive or self-repair substantial perturbation. Chaos theory discusses self-organization in terms of islands of predictability in a sea of chaotic unpredictability.

Arrow of time Concept in physics that time is asymmetric (flowing one way)

The arrow of time, also called time's arrow, is the concept positing the "one-way direction" or "asymmetry" of time. It was developed in 1927 by the British astrophysicist Arthur Eddington, and is an unsolved general physics question. This direction, according to Eddington, could be determined by studying the organization of atoms, molecules, and bodies, and might be drawn upon a four-dimensional relativistic map of the world.

In physics and philosophy, a relational theory is a framework to understand reality or a physical system in such a way that the positions and other properties of objects are only meaningful relative to other objects. In a relational spacetime theory, space does not exist unless there are objects in it; nor does time exist without events. The relational view proposes that space is contained in objects and that an object represents within itself relationships to other objects. Space can be defined through the relations among the objects that it contains considering their variations through time. The alternative spatial theory is an absolute theory in which the space exists independently of any objects that can be immersed in it.

Branches of physics

Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.

Arthur Iberall American physicist

Arthur S. Iberall was an American physicist/hydrodynamicist and engineer who pioneered homeokinetics, the physics of complex, self-organizing systems. He was the originator of the concept of lines of non-extension on the human body which was used to create workable space suits.

<i>Decoding Reality</i>

Decoding Reality: The Universe as Quantum Information is a popular science book by Vlatko Vedral published by Oxford University Press in 2010. Vedral examines information theory and proposes information as the most fundamental building block of reality. He argues what a useful framework this is for viewing all natural and physical phenomena. In building out this framework the books touches upon the origin of information, the idea of entropy, the roots of this thinking in thermodynamics, the replication of DNA, development of social networks, quantum behaviour at the micro and macro level, and the very role of indeterminism in the universe. The book finishes by considering the answer to the ultimate question: where did all of the information in the Universe come from? The ideas address concepts related to the nature of particles, time, determinism, and of reality itself.

The following outline is provided as an overview of and topical guide to natural science:

Social physics or sociophysics is a field of science which uses mathematical tools inspired by physics to understand the behavior of human crowds. In a modern commercial use, it can also refer to the analysis of social phenomena with big data.

Harry Soodak American physicist and professor

Harry Soodak was an American physicist who worked on the Manhattan Project, publishing the first design of a sodium-cooled breeder reactor, and was a professor at City College of New York. Along with Arthur Iberall, Soodak developed the concept of homeokinetics to explain the functioning of complex systems.

References

  1. 1 2 H. Soodak and A. Iberall (August 1978). "Homeokinetics: A Physical Science for Complex Systems" (PDF). Science. 201 (4356): 579–582. Bibcode:1978Sci...201..579S. doi:10.1126/science.201.4356.579. PMID   17794110.
  2. 1 2 3 Iberall, A.S., Homeokinetics: The Basics. Strong Voices Publishing, 2016.
  3. Iberall, A. and Soodak, H.: A physics for complex systems. In F. Yates, (ed.), Self-Organizing Systems, pp. 499-520. Plenum Press, NY 1987, p 499-520
  4. Iberall, A.S. and S.Z. Cardon. Analysis of the dynamic systems response of some internal human systems. Clearinghouse for Federal Scientific and Technical Information; Reports to NASA: CR-129, Oct. 1964; CR-141, Jan. 1965; CR-219, May 1965; Interim Report, Dec. 1965.
  5. Iberall, A.S., M. Ehrenberg and S.Z. Cardon. General-dynamics of the physical-chemical systems in mammals. Contractors Report to NASA, NASW-1066, Aug. 1966.
  6. Iberall, A.S. and S.Z. Cardon. Hierarchical regulation in the complex biological organism. Record of the IEEE Systems Science and Cybernetics Conference, Phila., October, 1969.
  7. Iberall, A.S. and W.S. McCulloch. The organizing principle of complex living systems. J. Basic Engr., ASME 290-294, 1969.
  8. Arthur Iberall and Harry Soodak (1988). "Primer on Homeokinetics: A Physical Foundation for Complex Systems" (PDF). Cri-de-Coeur Press.
  9. Yates, FE (2008). "Homeokinetics/Homeodynamics: A Physical Heuristic for Life and Complexity". J Ecol Psych. 2 (2): 148–179. doi:10.1080/10407410801977546.
  10. Iberall, A., A physical (homeokinetic) foundation for the Gibsonian theory of perception and action, Ecolog. Psychol. 7(1): 37-68, 1995.
  11. Deshmukh, VD Homeokinetic Mind: Equanimity (Sthita-Prajnaa) and Self-Renewal, workshop presentation, Univ Massachusetts, Dartmouth, 2009
  12. Kelso, J.A.S. An Essay on Understanding the Mind, Ecol. Psych., 20:2, 180-208.
  13. Kelso, J.A.S. Phase transitions and critical behavior in human bimanual coordination Amer. J. Physiology-Regulatory,  246(6), June 1984, R1000-4.
  14. Kelso JA, Holt KG, Rubin P, Kugler PN (1981). "Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: theory and data". J mot Behav. 13 (4): 226–61. doi:10.1080/00222895.1981.10735251. PMID   15215072.
  15. Ross, S., and Ware, K. Hypothesizing the body's genius to trigger and self-organize its healing: 25 years using a standardized neurophysics therapy, Front. Physiol., 19 November 2013
  16. Iberall, A.S., H. Soodak and C. Arensberg. Homeokinetic physics of societies - A new discipline: Autonomous groups, cultures, polities. In: H. Reul et al (eds.). Perspectives in Biomechanics, Vol. I, Part A. Harwood Academic Press, N.Y., pp. 433-527, 1980.
  17. Iberall A. "Outlining social physics for modern societies - locating culture, economics, and politics: The Enlightenment reconsidered". Proc Nat Academy Sciences USA. 82 (5582–84): 1985.
  18. Iberall, A., Hassler, F., Soodak, H, and Wilkinson, D. Invitation to an Enterprise: From Physics to World History to Civilizations’ Study, Comparative Civilization Review, 42, Spring, 2000, p 4-22
  19. Iberall, A., A characteristic 500-year process-time in cultural civilization, Comparative Civilization Review, 32: 146-162, Spring, 1995.
  20. Iberall, A. A physics for studies of civilizations. In: F.E. Yates, (ed.), Self-Organizing Systems: The Emergence of Order. New York: Plenum Press, 1987, p 521-540.
  21. Iberall, A. and Wilkinson, D. Dynamic foundations for complex social systems. In: G. Modelski, (ed.), Exploring Long Cycles. Lynne Rienner Publishers, Boulder, CO 1987.
  22. Kelso, J. A. Scott (2008-04-18). "An Essay on Understanding the Mind". Ecological Psychology. 20 (2): 180–208. doi:10.1080/10407410801949297. ISSN   1040-7413. PMC   2768408 . PMID   19865611.