Homological conjectures in commutative algebra

Last updated

In mathematics, homological conjectures have been a focus of research activity in commutative algebra since the early 1960s. They concern a number of interrelated (sometimes surprisingly so) conjectures relating various homological properties of a commutative ring to its internal ring structure, particularly its Krull dimension and depth.

The following list given by Melvin Hochster is considered definitive for this area. In the sequel, , and refer to Noetherian commutative rings; will be a local ring with maximal ideal , and and are finitely generated -modules.

  1. The Zero Divisor Theorem. If has finite projective dimension and is not a zero divisor on , then is not a zero divisor on .
  2. Bass's Question. If has a finite injective resolution then is a Cohen–Macaulay ring.
  3. The Intersection Theorem. If has finite length, then the Krull dimension of N (i.e., the dimension of R modulo the annihilator of N) is at most the projective dimension of M.
  4. The New Intersection Theorem. Let denote a finite complex of free R-modules such that has finite length but is not 0. Then the (Krull dimension) .
  5. The Improved New Intersection Conjecture. Let denote a finite complex of free R-modules such that has finite length for and has a minimal generator that is killed by a power of the maximal ideal of R. Then .
  6. The Direct Summand Conjecture. If is a module-finite ring extension with R regular (here, R need not be local but the problem reduces at once to the local case), then R is a direct summand of S as an R-module. The conjecture was proven by Yves André using a theory of perfectoid spaces. [1]
  7. The Canonical Element Conjecture. Let be a system of parameters for R, let be a free R-resolution of the residue field of R with , and let denote the Koszul complex of R with respect to . Lift the identity map to a map of complexes. Then no matter what the choice of system of parameters or lifting, the last map from is not 0.
  8. Existence of Balanced Big Cohen–Macaulay Modules Conjecture. There exists a (not necessarily finitely generated) R-module W such that mRW ≠ W and every system of parameters for R is a regular sequence on W.
  9. Cohen-Macaulayness of Direct Summands Conjecture. If R is a direct summand of a regular ring S as an R-module, then R is Cohen–Macaulay (R need not be local, but the result reduces at once to the case where R is local).
  10. The Vanishing Conjecture for Maps of Tor. Let be homomorphisms where R is not necessarily local (one can reduce to that case however), with A, S regular and R finitely generated as an A-module. Let W be any A-module. Then the map is zero for all .
  11. The Strong Direct Summand Conjecture. Let be a map of complete local domains, and let Q be a height one prime ideal of S lying over , where R and are both regular. Then is a direct summand of Q considered as R-modules.
  12. Existence of Weakly Functorial Big Cohen-Macaulay Algebras Conjecture. Let be a local homomorphism of complete local domains. Then there exists an R-algebra BR that is a balanced big Cohen–Macaulay algebra for R, an S-algebra that is a balanced big Cohen-Macaulay algebra for S, and a homomorphism BR → BS such that the natural square given by these maps commutes.
  13. Serre's Conjecture on Multiplicities. (cf. Serre's multiplicity conjectures.) Suppose that R is regular of dimension d and that has finite length. Then , defined as the alternating sum of the lengths of the modules is 0 if , and is positive if the sum is equal to d. (N.B. Jean-Pierre Serre proved that the sum cannot exceed d.)
  14. Small Cohen–Macaulay Modules Conjecture. If R is complete, then there exists a finitely-generated R-module such that some (equivalently every) system of parameters for R is a regular sequence on M.

Related Research Articles

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

Commutative ring Algebraic structure

In ring theory, a branch of abstract algebra, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of noncommutative rings where multiplication is not required to be commutative.

Homological algebra area of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

Ring theory Branch of algebra

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type.

In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, then any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.

In homological algebra and algebraic geometry, a flat module over a ring R is an R-module M such that taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.

In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.

In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then by Krull's principal ideal theorem n ≥ dim A, and A is defined to be regular if n = dim A.

In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring R with finite injective dimension as an R-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring is self-dual in some sense.

In mathematics, the Noether normalization lemma is a result of commutative algebra, introduced by Emmy Noether in 1926. It states that for any field k, and any finitely generated commutative k-algebraA, there exists a non-negative integer d and algebraically independent elements y1, y2, ..., yd in A such that A is a finitely generated module over the polynomial ring S = k [y1, y2, ..., yd].

In algebraic geometry, local cohomology is an analog of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by Hartshorne (1967), and in 1961-2 at IHES written up as SGA2 - Grothendieck (1968), republished as Grothendieck (2005).

In mathematics, a D-module is a module over a ring D of differential operators. The major interest of such D-modules is as an approach to the theory of linear partial differential equations. Since around 1970, D-module theory has been built up, mainly as a response to the ideas of Mikio Sato on algebraic analysis, and expanding on the work of Sato and Joseph Bernstein on the Bernstein–Sato polynomial.

In mathematics, especially in the area of abstract algebra known as module theory, a ring R is called hereditary if all submodules of projective modules over R are again projective. If this is required only for finitely generated submodules, it is called semihereditary.

In commutative and homological algebra, depth is an important invariant of rings and modules. Although depth can be defined more generally, the most common case considered is the case of modules over a commutative Noetherian local ring. In this case, the depth of a module is related with its projective dimension by the Auslander–Buchsbaum formula. A more elementary property of depth is the inequality

In mathematics, and more specifically in homological algebra, a resolution is an exact sequence of modules, which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are non-zero; it is usually represented by a finite exact sequence in which the leftmost object or the rightmost object is the zero-object.

In mathematics, dimension theory is the study in terms of commutative algebra of the notion dimension of an algebraic variety. The need of a theory for such an apparently simple notion results from the existence of many definitions of the dimension that are equivalent only in the most regular cases. A large part of dimension theory consists in studying the conditions under which several dimensions are equal, and many important classes of commutative rings may be defined as the rings such that two dimensions are equal; for example, a regular ring is a commutative ring such that the homological dimension is equal to the Krull dimension.

In mathematics, a Stanley–Reisner ring, or face ring, is a quotient of a polynomial algebra over a field by a square-free monomial ideal. Such ideals are described more geometrically in terms of finite simplicial complexes. The Stanley–Reisner ring construction is a basic tool within algebraic combinatorics and combinatorial commutative algebra. Its properties were investigated by Richard Stanley, Melvin Hochster, and Gerald Reisner in the early 1970s.

In mathematics, particularly in homological algebra and algebraic topology, the Eilenberg–Ganea theorem states for every finitely generated group G with certain conditions on its cohomological dimension, one can construct an aspherical CW complex X of dimension n whose fundamental group is G. The theorem is named after Polish mathematician Samuel Eilenberg and Romanian mathematician Tudor Ganea. The theorem was first published in a short paper in 1957 in the Annals of Mathematics.

In algebra, a generalized Cohen–Macaulay ring is a commutative Noetherian local ring of Krull dimension d > 0 that satisfies any of the following equivalent conditions:

References

  1. André, Yves (2018). "La conjecture du facteur direct". Publications Mathématiques de l'IHÉS . 127: 71–93. arXiv: 1609.00345 . doi:10.1007/s10240-017-0097-9. MR   3814651.