IPv6-to-IPv6 Network Prefix Translation

Last updated
IPv6-to-IPv6 Network Prefix Translation
Communication protocol
Nat66.drawio.png
Purpose network address translation
Introduction2011;12 years ago (2011)
RFC(s) 6296, 7157...

IPv6-to-IPv6 Network Prefix Translation (NPTv6) is a specification for IPv6 to achieve address-independence at the network edge, similar to network address translation (NAT) in Internet Protocol version 4 (IPv4). It has fewer architectural problems than traditional IPv4 NAT; for example, it is stateless and preserves the reachability attributed to the end-to-end principle. However, the method may not translate embedded IPv6 addresses properly (IPsec can be impacted), and split-horizon DNS may be required for use in a business environment.

NPTv6 Multihoming example NPTv6 Multihoming.png
NPTv6 Multihoming example

NPTv6 differs from NAT66, which is stateful. With NPTv6, no port translation is required nor other manipulation of transport characteristics. Compared to NAT66, with NPTv6 there is end-to-end reachability along with 1:1 address mapping. This makes NPTv6 a better choice than NAT66. [1]

Related Research Articles

An Internet Protocol address is a numerical label such as 192.0.2.1 that is connected to a computer network that uses the Internet Protocol for communication. An IP address serves two main functions: network interface identification and location addressing.

<span class="mw-page-title-main">Internet Protocol version 4</span> Fourth version of the Internet Protocol

Internet Protocol version 4 (IPv4) is the fourth version of the Internet Protocol (IP). It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production on SATNET in 1982 and on the ARPANET in January 1983. It is still used to route most Internet traffic today, even with the ongoing deployment of Internet Protocol version 6 (IPv6), its successor.

<span class="mw-page-title-main">IPv6</span> Version 6 of the Internet Protocol

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and is intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.

In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.

<span class="mw-page-title-main">Network address translation</span> Protocol facilitating connection of one IP address space to another

Network address translation (NAT) is a method of mapping an IP address space into another by modifying network address information in the IP header of packets while they are in transit across a traffic routing device. The technique was originally used to bypass the need to assign a new address to every host when a network was moved, or when the upstream Internet service provider was replaced, but could not route the network's address space. It has become a popular and essential tool in conserving global address space in the face of IPv4 address exhaustion. One Internet-routable IP address of a NAT gateway can be used for an entire private network.

<span class="mw-page-title-main">IP fragmentation</span> Process that breaks IP packets into smaller pieces

IP fragmentation is an Internet Protocol (IP) process that breaks packets into smaller pieces (fragments), so that the resulting pieces can pass through a link with a smaller maximum transmission unit (MTU) than the original packet size. The fragments are reassembled by the receiving host.

Multihoming is the practice of connecting a host or a computer network to more than one network. This can be done in order to increase reliability or performance.

In Internet networking, a private network is a computer network that uses a private address space of IP addresses. These addresses are commonly used for local area networks (LANs) in residential, office, and enterprise environments. Both the IPv4 and the IPv6 specifications define private IP address ranges.

Netfilter is a framework provided by the Linux kernel that allows various networking-related operations to be implemented in the form of customized handlers. Netfilter offers various functions and operations for packet filtering, network address translation, and port translation, which provide the functionality required for directing packets through a network and prohibiting packets from reaching sensitive locations within a network.

In computer networking, Teredo is a transition technology that gives full IPv6 connectivity for IPv6-capable hosts that are on the IPv4 Internet but have no native connection to an IPv6 network. Unlike similar protocols such as 6to4, it can perform its function even from behind network address translation (NAT) devices such as home routers.

<span class="mw-page-title-main">LogMeIn Hamachi</span> Virtual private network application

LogMeIn Hamachi is a virtual private network (VPN) application developed and released in 2004 by Alex Pankratov. It is capable of establishing direct links between computers that are behind network address translation (NAT) firewalls without requiring reconfiguration. Like other VPNs, it establishes a connection over the Internet that emulates the connection that would exist if the computers were connected over a local area network (LAN).

Anything In Anything (AYIYA) is a computer networking protocol for managing IP tunneling protocols in use between separated Internet Protocol networks. It is most often used to provide IPv6 transit over an IPv4 network link when network address translation masquerades a private network with a single IP address that may change frequently because of DHCP provisioning by Internet service providers.

<span class="mw-page-title-main">IPv4 address exhaustion</span> Depletion of the pool of unallocated IPv4 addresses

IPv4 address exhaustion is the depletion of the pool of unallocated IPv4 addresses. Because the original Internet architecture had fewer than 4.3 billion addresses available, depletion has been anticipated since the late 1980s, when the Internet started experiencing dramatic growth. This depletion is one of the reasons for the development and deployment of its successor protocol, IPv6. IPv4 and IPv6 coexist on the Internet.

An IPv6 transition mechanism is a technology that facilitates the transitioning of the Internet from the Internet Protocol version 4 (IPv4) infrastructure in use since 1983 to the successor addressing and routing system of Internet Protocol Version 6 (IPv6). As IPv4 and IPv6 networks are not directly interoperable, transition technologies are designed to permit hosts on either network type to communicate with any other host.

<span class="mw-page-title-main">IPv6 address</span> Label to identify a network interface of a computer or other network node

An Internet Protocol Version 6 address is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in a computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks.

<span class="mw-page-title-main">Carrier-grade NAT</span> Type of network address translation

Carrier-grade NAT, also known as large-scale NAT (LSN), is a type of network address translation (NAT) for use in IPv4 network design. With CGNAT, end sites, in particular residential networks, are configured with private network addresses that are translated to public IPv4 addresses by middlebox network address translator devices embedded in the network operator's network, permitting the sharing of small pools of public addresses among many end sites. This shifts the NAT function and configuration thereof from the customer premises to the Internet service provider network.

NAT64 is an IPv6 transition mechanism that facilitates communication between IPv6 and IPv4 hosts by using a form of network address translation (NAT). The NAT64 gateway is a translator between IPv4 and IPv6 protocols, for which function it needs at least one IPv4 address and an IPv6 network segment comprising a 32-bit address space. The "well-known prefix" reserved for this service is 64:ff9b::/96.

<span class="mw-page-title-main">IVI Translation</span>

IVI Translation refers to a stateless IPv4/IPv6 translation technique. It allows hosts in different address families communicate with each other and keeps the end-to-end address transparency.

dIVI Translation IPv4/IPv6 translation technique

dIVI Translation refers to a dual stateless IPv4/IPv6 translation technique. dIVI is an extension of 1:1 stateless IPv4/IPv6 translation with features of IPv4 address sharing and dual translation. dIVI-PD is a further extension of dIVI to be well used in Wireline and Wireless (3G/4G) access environment, where the prefix delegation is preferred. dIVI-PD is now standardized as MAP-T in the IETF.

Port Control Protocol (PCP) is a computer networking protocol that allows hosts on IPv4 or IPv6 networks to control how the incoming IPv4 or IPv6 packets are translated and forwarded by an upstream router that performs network address translation (NAT) or packet filtering. By allowing hosts to create explicit port forwarding rules, handling of the network traffic can be easily configured to make hosts placed behind NATs or firewalls reachable from the rest of the Internet, which is a requirement for many applications.

References