Induced gamma emission

Last updated

In physics, induced gamma emission (IGE) refers to the process of fluorescent emission of gamma rays from excited nuclei, usually involving a specific nuclear isomer. It is analogous to conventional fluorescence, which is defined as the emission of a photon (unit of light) by an excited electron in an atom or molecule. In the case of IGE, nuclear isomers can store significant amounts of excitation energy for times long enough for them to serve as nuclear fluorescent materials. There are over 800 known nuclear isomers [1] but almost all are too intrinsically radioactive to be considered for applications. As of 2006 there were two proposed[ citation needed ] nuclear isomers that appeared to be physically capable of IGE fluorescence in safe arrangements: tantalum-180m and hafnium-178m2.

Contents

History

Energetics of IGE from In. Arrows are photons, (up) absorption, (down) emission. Horizontal lines represent excited states of In involved in IGE. In115small.jpg
Energetics of IGE from In. Arrows are photons, (up) absorption, (down) emission. Horizontal lines represent excited states of In involved in IGE.

Induced gamma emission is an example of interdisciplinary research bordering on both nuclear physics and quantum electronics. Viewed as a nuclear reaction it would belong to a class in which only photons were involved in creating and destroying states of nuclear excitation. It is a class usually overlooked in traditional discussions. In 1939 Pontecorvo and Lazard [2] reported the first example of this type of reaction. Indium was the target and in modern terminology describing nuclear reactions it would be written 115In(γ,γ')115mIn. The product nuclide carries an "m" to denote that it has a long enough half life (4.5 h in this case) to qualify as being a nuclear isomer. That is what made the experiment possible in 1939 because the researchers had hours to remove the products from the irradiating environment and then to study them in a more appropriate location.

With projectile photons, momentum and energy can be conserved only if the incident photon, X-ray or gamma, has precisely the energy corresponding to the difference in energy between the initial state of the target nucleus and some excited state that is not too different in terms of quantum properties such as spin. There is no threshold behavior and the incident projectile disappears and its energy is transferred into internal excitation of the target nucleus. It is a resonant process that is uncommon in nuclear reactions but normal in the excitation of fluorescence at the atomic level. Only as recently as 1988 was the resonant nature of this type of reaction finally proven. [3] Such resonant reactions are more readily described by the formalities of atomic fluorescence and further development was facilitated by an interdisciplinary approach of IGE.

There is little conceptual difference in an IGE experiment when the target is a nuclear isomer. Such a reaction as mX(γ,γ')X where mX is one of the five candidates listed above, is only different because there are lower energy states for the product nuclide to enter after the reaction than there were at the start. Practical difficulties arise from the need to ensure safety from the spontaneous radioactive decay of nuclear isomers in quantities sufficient for experimentation. Lifetimes must be long enough that doses from the spontaneous decay from the targets always remain within safe limits. In 1988 Collins and coworkers [4] reported the first excitation of IGE from a nuclear isomer. They excited fluorescence from the nuclear isomer tantalum-180m with x-rays produced by an external beam radiotherapy linac. Results were surprising and considered to be controversial until the resonant states excited in the target were identified. [5]

Distinctive features

Potential applications

Energy-specific dosimeters

Since the IGE from ground state nuclei requires the absorption of very specific photon energies to produce delayed fluorescent photons that are easily counted, there is the possibility to construct energy-specific dosimeters by combining several different nuclides. This was demonstrated [6] for the calibration of the radiation spectrum from the DNA-PITHON pulsed nuclear simulator. Such a dosimeter could be useful in radiation therapy where X-ray beams may contain many energies. Since photons of different energies deposit their effects at different depths in the tissue being treated, it could help calibrate how much of the total dose would be deposited in the actual target volume.

Aircraft power

hafnium crystalline bar Hf-crystal bar.jpg
hafnium crystalline bar

In February 2003, the non-peer reviewed New Scientist wrote about the possibility of an IGE-powered airplane, a variant on nuclear propulsion. [7] The idea was to utilize 178m2Hf (presumably due to its high energy to weight ratio) which would be triggered to release gamma rays that would heat air in a chamber for jet propulsion. This power source is described as a "quantum nucleonic reactor", although it is not clear if this name exists only in reference to the New Scientist article.

Nuclear weaponry

It is partly this theoretical density that has made the entire IGE field so controversial. It has been suggested that the materials might be constructed to allow all of the stored energy to be released very quickly in a "burst". The possible energy release of the gammas alone would make IGE a potential high power "explosive" on its own, or a potential radiological weapon.

Fusion bomb ignition

The density of gammas produced in this reaction would be high enough that it might allow them to be used to compress the fusion fuel of a fusion bomb. If this turns out to be the case, it might allow a fusion bomb to be constructed with no fissile material inside (i.e. a pure fusion weapon); it is the control of the fissile material and the means for making it that underlies most attempts to stop nuclear proliferation.

See also

Related Research Articles

<span class="mw-page-title-main">Fluorescence</span> Emission of light by a substance that has absorbed light

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum, while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescent materials, which continue to emit light for some time after.

The Mössbauer effect, or recoilless nuclear resonance fluorescence, is a physical phenomenon discovered by Rudolf Mössbauer in 1958. It involves the resonant and recoil-free emission and absorption of gamma radiation by atomic nuclei bound in a solid. Its main application is in Mössbauer spectroscopy.

<span class="mw-page-title-main">Compton scattering</span> Scattering of photons off charged particles

Compton scattering is the quantum theory of high frequency photons scattering following an interaction with a charged particle, usually an electron. Specifically, when the photon hits electrons, it releases loosely bound electrons from the outer valence shells of atoms or molecules.

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

<span class="mw-page-title-main">Photoluminescence</span> Light emission from substances after they absorb photons

Photoluminescence is light emission from any form of matter after the absorption of photons. It is one of many forms of luminescence and is initiated by photoexcitation, hence the prefix photo-. Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.

<span class="mw-page-title-main">Nuclear isomer</span> Metastable excited state of a nuclide

A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state (higher energy) levels. "Metastable" describes nuclei whose excited states have half-lives 100 to 1000 times longer than the half-lives of the excited nuclear states that decay with a "prompt" half life (ordinarily on the order of 10−12 seconds). The term "metastable" is usually restricted to isomers with half-lives of 10−9 seconds or longer. Some references recommend 5 × 10−9 seconds to distinguish the metastable half life from the normal "prompt" gamma-emission half-life. Occasionally the half-lives are far longer than this and can last minutes, hours, or years. For example, the 180m
73
Ta
nuclear isomer survives so long (at least 1015 years) that it has never been observed to decay spontaneously. The half-life of a nuclear isomer can even exceed that of the ground state of the same nuclide, as shown by 180m
73
Ta
as well as 192m2
77
Ir
, 210m
83
Bi
, 242m
95
Am
and multiple holmium isomers.

<span class="mw-page-title-main">Scintillator</span> Material which glows when excited by ionizing radiation

A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed. The process then corresponds to one of two phenomena: delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon.

<span class="mw-page-title-main">Internal conversion</span> Process where an excited nucleus ejects an orbital electron from its atom

Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal conversion, a high-energy electron is emitted from the excited atom, but not from the nucleus. For this reason, the high-speed electrons resulting from internal conversion are not called beta particles, since the latter come from beta decay, where they are newly created in the nuclear decay process.

In condensed matter physics, scintillation is the physical process where a material, called a scintillator, emits ultraviolet or visible light under excitation from high energy photons or energetic particles. See scintillator and scintillation counter for practical applications.

Thorium (90Th) has seven naturally occurring isotopes but none are stable. One isotope, 232Th, is relatively stable, with a half-life of 1.405×1010 years, considerably longer than the age of the Earth, and even slightly longer than the generally accepted age of the universe. This isotope makes up nearly all natural thorium, so thorium was considered to be mononuclidic. However, in 2013, IUPAC reclassified thorium as binuclidic, due to large amounts of 230Th in deep seawater. Thorium has a characteristic terrestrial isotopic composition and thus a standard atomic weight can be given.

Seaborgium (106Sg) is a synthetic element and so has no stable isotopes. A standard atomic weight cannot be given. The first isotope to be synthesized was 263Sg in 1974. There are 13 known radioisotopes from 258Sg to 271Sg and 4 known isomers. The longest-lived isotope is 269Sg with a half-life of 14 minutes.

Ultrafast laser spectroscopy is a spectroscopic technique that uses ultrashort pulse lasers for the study of dynamics on extremely short time scales. Different methods are used to examine the dynamics of charge carriers, atoms, and molecules. Many different procedures have been developed spanning different time scales and photon energy ranges; some common methods are listed below.

Yrast is a technical term in nuclear physics that refers to a state of a nucleus with a minimum of energy for a given angular momentum. Yr is a Swedish adjective sharing the same root as the English whirl. Yrast is the superlative of yr and can be translated whirlingest, although it literally means "dizziest" or "most bewildered". The yrast levels are vital to understanding reactions, such as off-center heavy ion collisions, that result in high-spin states.

<span class="mw-page-title-main">Mössbauer spectroscopy</span> Spectroscopic technique

Mössbauer spectroscopy is a spectroscopic technique based on the Mössbauer effect. This effect, discovered by Rudolf Mössbauer in 1958, consists of the nearly recoil-free emission and absorption of nuclear gamma rays in solids. The consequent nuclear spectroscopy method is exquisitely sensitive to small changes in the chemical environment of certain nuclei.

The hafnium controversy was a debate over the possibility of 'triggering' rapid energy releases, via gamma ray emission, from a nuclear isomer of hafnium, 178m2Hf. Per event the energy release is 5 orders of magnitude more energetic than in a typical chemical reaction, but 2 orders of magnitude less than a nuclear fission reaction. In 1998, a group led by Carl Collins of the University of Texas at Dallas reported having successfully initiated such a trigger. Signal-to-noise ratios were small in those first experiments, and to date no other group has been able to duplicate these results. Peter Zimmerman described claims of weaponization potential as having been based on "very bad science".

<span class="mw-page-title-main">Nuclear clock</span> Clock based on an atomic nucleus instead of an atom

A nuclear clock or nuclear optical clock is a notional clock that would use the frequency of a nuclear transition as its reference frequency, in the same manner as an atomic clock uses the frequency of an electronic transition in an atom's shell. Such a clock is expected to be more accurate than the best current atomic clocks by a factor of about 10, with an achievable accuracy approaching the 10−19 level. The only nuclear state suitable for the development of a nuclear clock using existing technology is thorium-229m, a nuclear isomer of thorium-229 and the lowest-energy nuclear isomer known. With an energy of about 8 eV, the corresponding ground-state transition is expected to be in the vacuum ultraviolet wavelength region around 150 nm, which would make it accessible to laser excitation. A comprehensive review can be found in reference.

In atomic physics, giant resonance is a high-frequency collective excitation of atomic nuclei, as a property of many-body quantum systems. In the macroscopic interpretation of such an excitation in terms of an oscillation, the most prominent giant resonance is a collective oscillation of all protons against all neutrons in a nucleus.

<span class="mw-page-title-main">Gamma ray</span> Energetic electromagnetic radiation arising from radioactive decay of atomic nuclei

A gamma ray, also known as gamma radiation (symbol γ or ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3×1019 Hz), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

Nuclear resonance fluorescence (NRF) is a nuclear process in which a nucleus absorbs and emits high-energy photons called gamma rays. NRF interactions typically take place above 1 MeV, and most NRF experiments target heavy nuclei such as uranium and thorium

References

  1. "Table of Isotopes". Archived from the original on 2006-02-05. Retrieved 2006-09-01.
  2. B. Pontecorvo; A. Lazard (1939). "Isomérie nucléaire produite par les rayons X du spectre continu". C. R. Acad. Sci. 208 (2): 99–101. Archived from the original on 2023-04-18. Retrieved 2021-01-29.
  3. C. B. Collins; J. A. Anderson; Y. Paiss; C. D. Eberhard; R. J. Peterson; W. L. Hodge (1988). "Activation of 115Inm by single pulses of intense bremsstrahlung". Phys. Rev. C. 38 (4): 1852–1856. Bibcode:1988PhRvC..38.1852C. doi:10.1103/PhysRevC.38.1852. PMID   9954995.
  4. C. B. Collins; C. D. Eberhard; J. W. Glesener; J. A. Anderson (1988). "Depopulation of the isomeric state 180Tam by the reaction 180Tam(γ,γ′)180Ta". Phys. Rev. C. 37 (5): 2267–2269. Bibcode:1988PhRvC..37.2267C. doi:10.1103/PhysRevC.37.2267. PMID   9954706.
  5. C. B. Collins; J. J. Carroll; T. W. Sinor; M. J. Byrd; D. G. Richmond; K. N. Taylor; M. Huber; N. Huxel; P. v. Neumann-Cosle; A. Richter; C. Spieler; W. Ziegler (1990). "Resonant excitation of the reaction 180Tam(γ,γ')180Ta". Phys. Rev. C. 42 (5): 1813–1816. Bibcode:1990PhRvC..42.1813C. doi:10.1103/PhysRevC.42.R1813. PMID   9966920.
  6. J. A. Anderson; C. B. Collins (1988). "Calibration of pulsed x-ray spectra". Rev Sci Instrum. 59 (3): 414. Bibcode:1988RScI...59..414A. doi:10.1063/1.1140219.
  7. "Nuclear-powered drone aircraft on drawing board - 19 February 2003 - New Scientist". Archived from the original on 12 May 2008. Retrieved 1 September 2017.

Literature