Information element

Last updated

An information element, sometimes informally referred to as a field, is an item in Q.931 [1] and Q.2931 [2] messages, IEEE 802.11 management frames, [3] and cellular network messages sent between a base transceiver station and a mobile phone or similar piece of user equipment. [4] An information element is often a type-length-value item, containing 1) a type (which corresponds to the label of a field), a length indicator, and a value, although any combination of one or more of those parts is possible. A single message may contain multiple information elements.

The abbreviation IE is found in many technical specification documents from 3GPP. It is not uncommon for a single specification document to contain thousands of references to IEs.

See also

Related Research Articles

OSI model Model with 7 layers to describe communications systems

The Open Systems Interconnection model is a conceptual model that characterizes and standardizes the communication functions of a telecommunication or computing system without regard to its underlying internal structure and technology. Its goal is the interoperability of diverse communication systems with standard communication protocols. The model partitions a communication system into abstraction layers. The original version of the model had seven layers.

SMS Text messaging service component

SMS is a text messaging service component of most telephone, Internet, and mobile device systems. It uses standardized communication protocols to enable mobile devices to exchange short text messages. An intermediary service can facilitate a text-to-voice conversion to be sent to landlines. SMS was the most widely used data application at the end of 2010, with an estimated 3.5 billion active users, or about 80% of all mobile subscribers.

The Intelligent Network (IN) is the standard network architecture specified in the ITU-T Q.1200 series recommendations. It is intended for fixed as well as mobile telecom networks. It allows operators to differentiate themselves by providing value-added services in addition to the standard telecom services such as PSTN, ISDN on fixed networks, and GSM services on mobile phones or other mobile devices.

X.25 ITU-T Recommendation

X.25 is an ITU-T standard protocol suite for packet-switched data communication in wide area networks (WAN). It was originally defined by the International Telegraph and Telephone Consultative Committee in a series of drafts and finalized in a publication known as The Orange Book in 1976.

Signaling System No. 7 (SS7) is a set of telephony signaling protocols developed in 1975, which is used to set up and tear down telephone calls in most parts of the world-wide public switched telephone network (PSTN). The protocol also performs number translation, local number portability, prepaid billing, Short Message Service (SMS), and other services.

Medium access control a service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. Within the data link layer, the LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

The Message Transfer Part (MTP) is part of the Signaling System 7 (SS7) used for communication in Public Switched Telephone Networks. MTP is responsible for reliable, unduplicated and in-sequence transport of SS7 messages between communication partners.

The ISDN User Part or ISUP is part of Signaling System No. 7 (SS7), which is used to set up telephone calls in the public switched telephone network (PSTN). It is specified by the ITU-T as part of the Q.76x series.

Mobility management is one of the major functions of a GSM or a UMTS network that allows mobile phones to work. The aim of mobility management is to track where the subscribers are, allowing calls, SMS and other mobile phone services to be delivered to them.

The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is an architectural framework for delivering IP multimedia services. Historically, mobile phones have provided voice call services over a circuit-switched-style network, rather than strictly over an IP packet-switched network. Alternative methods of delivering voice (VoIP) or other multimedia services have become available on smartphones, but they have not become standardized across the industry. IMS is an architectural framework to provide such standardization.

ITU-T Recommendation Q.931 is the ITU standard ISDN connection control signalling protocol, forming part of Digital Subscriber Signalling System No. 1. Unlike connectionless systems like UDP, ISDN is connection oriented and uses explicit signalling to manage call state: Q.931. Q.931 typically does not carry user data. Q.931 does not have a direct equivalent in the Internet Protocol stack, but can be compared to SIP. Q.931 does not provide flow control or perform retransmission, since the underlying layers are assumed to be reliable and the circuit-oriented nature of ISDN allocates bandwidth in fixed increments of 64 kbit/s. Amongst other things, Q.931 manages connection setup and breakdown. Like TCP, Q.931 documents both the protocol itself and a protocol state machine.

The Mobile Application Part (MAP) is an SS7 protocol that provides an application layer for the various nodes in GSM and UMTS mobile core networks and GPRS core networks to communicate with each other in order to provide services to users. The Mobile Application Part is the application-layer protocol used to access the Home Location Register, Visitor Location Register, Mobile Switching Center, Equipment Identity Register, Authentication Centre, Short message service center and Serving GPRS Support Node (SGSN).

The Signalling Connection Control Part (SCCP) is a network layer protocol that provides extended routing, flow control, segmentation, connection-orientation, and error correction facilities in Signaling System 7 telecommunications networks. SCCP relies on the services of MTP for basic routing and error detection.

Control plane protocol for the transport layer in 3rd Generation UMTS networks is called ALCAP. ALCAP is defined by 3GPP as equivalent of ITU recommendation Q.2630.2. Basic functionality of ALCAP is multiplexing of different users onto one AAL2 transmission path using channel IDs (CIDs). It is used in the UMTS access network UTRAN along with ATM, while IPBCP is use for IP links in the core of the network.

The CAMEL Application Part (CAP) is a signalling protocol used in the Intelligent Network (IN) architecture. CAP is a Remote Operations Service Element (ROSE) user protocol, and as such is layered on top of the Transaction Capabilities Application Part (TCAP) of the SS#7 protocol suite. CAP is based on a subset of the ETSI Core and allows for the implementation of carrier-grade, value added services such as unified messaging, prepaid, fraud control and Freephone in both the GSM voice and GPRS data networks. CAMEL is a means of adding intelligent applications to mobile networks. It builds upon established practices in the fixed line telephony business that are generally classed under the heading of or INAP CS-2 protocol.

MIMO Use of multiple antennas in radio

In radio, multiple-input and multiple-output, or MIMO, is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX (4G), and Long Term Evolution. More recently, MIMO has been applied to power-line communication for 3-wire installations as part of ITU G.hn standard and HomePlug AV2 specification.

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

Synchronous Ethernet, also referred as SyncE, is an ITU-T standard for computer networking that facilitates the transference of clock signals over the Ethernet physical layer. This signal can then be made traceable to an external clock.

Packet Forwarding Control Protocol (PFCP) is a 3GPP protocol used on the Sx/N4 interface between the control plane and the user plane function, specified in TS 29.244. It is one of the main protocols introduced in the 5G Next Generation Mobile Core Network, but also used in the 4G/LTE EPC to implement the Control and User Plane Separation (CUPS). PFCP and the associated interfaces seek to formalize the interactions between different types of functional elements used in the Mobile Core Networks as deployed by most operators providing 4G, as well as 5G, services to mobile subscribers. These 2 types of components are:

  1. The Control Plane (CP) functional elements, handling mostly signaling procedures
  2. The User-data Plane (UP) functional elements, handling mostly packet forwarding, based on rules set by the CP elements.

References

  1. ITU-T Recommendation Q.931 Digital subscriber Signalling System No. 1: ISDN user-network interface layer 3 specification for basic call control
  2. ITU-T Recommendation Q.2931 Digital Subscriber Signalling System No. 2 – User-Network Interface (UNI) layer 3 specification for basic call/connection control
  3. IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (2016 revision). IEEE-SA. 14 December 2016. doi:10.1109/IEEESTD.2016.7786995. ISBN   978-1-5044-3645-8.
  4. 3GPP Technical Specification 24.007 as published by ETSI, Section 11.2.1