Legendre's three-square theorem

Last updated

In mathematics, Legendre's three-square theorem states that a natural number can be represented as the sum of three squares of integers

Contents

if and only if n is not of the form for nonnegative integers a and b.

Distances between vertices of a double unit cube are square roots of the first six natural numbers due to the Pythagorean theorem ([?]7 is not possible due to Legendre's three-square theorem) Distances between double cube corners.svg
Distances between vertices of a double unit cube are square roots of the first six natural numbers due to the Pythagorean theorem (√7 is not possible due to Legendre's three-square theorem)

The first numbers that cannot be expressed as the sum of three squares (i.e. numbers that can be expressed as ) are

7, 15, 23, 28, 31, 39, 47, 55, 60, 63, 71 ... (sequence A004215 in the OEIS ).
a
b
012
0728112
11560240
22392368
331124496
439156624
547188752
655220880
7632521008
8712841136
9793161264
10873481392
11953801520
121034121648
Unexpressible values
up to 100 are in bold

History

Pierre de Fermat gave a criterion for numbers of the form 8a + 1 and 8a + 3 to be sums of a square plus twice another square, but did not provide a proof. [1] N. Beguelin noticed in 1774 [2] that every positive integer which is neither of the form 8n + 7, nor of the form 4n, is the sum of three squares, but did not provide a satisfactory proof. [3] In 1796 Gauss proved his Eureka theorem that every positive integer n is the sum of 3 triangular numbers; this is equivalent to the fact that 8n + 3 is a sum of three squares. In 1797 or 1798 A.-M. Legendre obtained the first proof of his 3 square theorem. [4] In 1813, A. L. Cauchy noted [5] that Legendre's theorem is equivalent to the statement in the introduction above. Previously, in 1801, C. F. Gauss had obtained a more general result, [6] containing Legendre's theorem of 1797–8 as a corollary. In particular, Gauss counted the number of solutions of the expression of an integer as a sum of three squares, and this is a generalisation of yet another result of Legendre, [7] whose proof is incomplete. This last fact appears to be the reason for later incorrect claims according to which Legendre's proof of the three-square theorem was defective and had to be completed by Gauss. [8]

With Lagrange's four-square theorem and the two-square theorem of Girard, Fermat and Euler, the Waring's problem for k = 2 is entirely solved.

Proofs

The "only if" of the theorem is simply because modulo 8, every square is congruent to 0, 1 or 4. There are several proofs of the converse (besides Legendre's proof). One of them is due to J. P. G. L. Dirichlet in 1850, and has become classical. [9] It requires three main lemmas:

Relationship to the four-square theorem

This theorem can be used to prove Lagrange's four-square theorem, which states that all natural numbers can be written as a sum of four squares. Gauss [10] pointed out that the four squares theorem follows easily from the fact that any positive integer that is 1 or 2 mod 4 is a sum of 3 squares, because any positive integer not divisible by 4 can be reduced to this form by subtracting 0 or 1 from it. However, proving the three-square theorem is considerably more difficult than a direct proof of the four-square theorem that does not use the three-square theorem. Indeed, the four-square theorem was proved earlier, in 1770.

See also

Notes

  1. "Fermat to Pascal" (PDF). September 25, 1654. Archived (PDF) from the original on July 5, 2017.
  2. Nouveaux Mémoires de l'Académie de Berlin (1774, publ. 1776), pp. 313–369.
  3. Leonard Eugene Dickson, History of the theory of numbers, vol. II, p. 15 (Carnegie Institute of Washington 1919; AMS Chelsea Publ., 1992, reprint).
  4. A.-M. Legendre, Essai sur la théorie des nombres, Paris, An VI (1797–1798), p. 202 and pp. 398–399.
  5. A. L. Cauchy, Mém. Sci. Math. Phys. de l'Institut de France, (1) 14 (1813–1815), 177.
  6. C. F. Gauss, Disquisitiones Arithmeticae , Art. 291 et 292.
  7. A.-M. Legendre, Hist. et Mém. Acad. Roy. Sci. Paris, 1785, pp. 514–515.
  8. See for instance: Elena Deza and M. Deza. Figurate numbers. World Scientific 2011, p. 314
  9. See for instance vol. I, parts I, II and III of : E. Landau, Vorlesungen über Zahlentheorie, New York, Chelsea, 1927. Second edition translated into English by Jacob E. Goodman, Providence RH, Chelsea, 1958.
  10. Gauss, Carl Friedrich (1965), Disquisitiones Arithmeticae, Yale University Press, p. 342, section 293, ISBN   0-300-09473-6

Related Research Articles

<span class="mw-page-title-main">Fundamental theorem of arithmetic</span> Integers have unique prime factorizations

In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. For example,

<span class="mw-page-title-main">Number theory</span> Mathematics of integer properties

Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers, or defined as generalizations of the integers.

<span class="mw-page-title-main">Quadratic reciprocity</span> Gives conditions for the solvability of quadratic equations modulo prime numbers

In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

In number theory, Euler's theorem states that, if n and a are coprime positive integers, then is congruent to modulo n, where denotes Euler's totient function; that is

In mathematics, a Fermat number, named after Pierre de Fermat, the first known to have studied them, is a positive integer of the form

In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer. In other words, there are infinitely many primes that are congruent to a modulo d. The numbers of the form a + nd form an arithmetic progression

In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely,

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e., if there exists an integer x such that:

In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is, the factorial satisfies

In mathematics, a quadratic irrational number is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients. The quadratic irrational numbers, a subset of the complex numbers, are algebraic numbers of degree 2, and can therefore be expressed as

<i>Disquisitiones Arithmeticae</i> 1798 textbook by Carl Friedrich Gauss

Disquisitiones Arithmeticae is a textbook on number theory written in Latin by Carl Friedrich Gauss in 1798, when Gauss was 21, and published in 1801, when he was 24. It had a revolutionary impact on number theory by making the field truly rigorous and systematic and paved the path for modern number theory. In this book, Gauss brought together and reconciled results in number theory obtained by such eminent mathematicians as Fermat, Euler, Lagrange, and Legendre, while adding profound and original results of his own.

Vorlesungen über Zahlentheorie is the name of several different textbooks of number theory. The best known was written by Peter Gustav Lejeune Dirichlet and Richard Dedekind, and published in 1863. Others were written by Leopold Kronecker, Edmund Landau, and Helmut Hasse. They all cover elementary number theory, Dirichlet's theorem, quadratic fields and forms, and sometimes more advanced topics.

In additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most nn-gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. That is, the n-gonal numbers form an additive basis of order n.

In additive number theory, Fermat's theorem on sums of two squares states that an odd prime p can be expressed as:

In mathematics, a binary quadratic form is a quadratic homogeneous polynomial in two variables

A timeline of number theory.

Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x4p is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence x4p to that of x4q.